Treatment of SARS-CoV-2-induced pneumonia with NAD+ and NMN in two mouse models was written by Jiang, Yisheng;Deng, Yongqiang;Pang, Huanhuan;Ma, Tiantian;Ye, Qing;Chen, Qi;Chen, Haiyang;Hu, Zeping;Qin, Cheng-Feng;Xu, Zhiheng. And the article was included in Cell Discovery in 2022.Synthetic Route of C11H15N2O8P The following contents are mentioned in the article:
The global COVID-19 epidemic has spread rapidly around the world and caused the death of more than 5 million people. It is urgent to develop effective strategies to treat COVID-19 patients. Here, we revealed that SARS-CoV-2 infection resulted in the dysregulation of genes associated with NAD+ metabolism, immune response, and cell death in mice, similar to that in COVID-19 patients. We therefore investigated the effect of treatment with NAD+ and its intermediate (NMN) and found that the pneumonia phenotypes, including excessive inflammatory cell infiltration, hemolysis, and embolization in SARS-CoV-2-infected lungs were significantly rescued. Cell death was suppressed substantially by NAD+ and NMN supplementation. More strikingly, NMN supplementation can protect 30% of aged mice infected with the lethal mouse-adapted SARS-CoV-2 from death. Mech., we found that NAD+ or NMN supplementation partially rescued the disturbed gene expression and metabolism caused by SARS-CoV-2 infection. Thus, our in vivo mouse study supports trials for treating COVID-19 patients by targeting the NAD+ pathway. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Synthetic Route of C11H15N2O8P).
((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Synthetic Route of C11H15N2O8P
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics