Abdubakiev, Sardorbek et al. published their research in Natural Product Research in 2020 | CAS: 18836-52-7

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Recommanded Product: (2E,4E)-N-Isobutyldeca-2,4-dienamide

N-Alkylamides from Piper longum L. and their stimulative effects on the melanin content and tyrosinase activity in B16 melanoma cells was written by Abdubakiev, Sardorbek;Li, Hongliang;Lu, Xueying;Li, Jun;Aisa, H. A.. And the article was included in Natural Product Research in 2020.Recommanded Product: (2E,4E)-N-Isobutyldeca-2,4-dienamide The following contents are mentioned in the article:

Piper longum L., known as long pepper, is an edible and medicinal plant used as spice and for the treatment of stomach disease and analgesia in traditional Chinese medicine. N-Alkylamides are the major secondary metabolites in this plant. Sixteen known N-alkylamides were isolated from P. longum. Their structures were established on the basis of spectroscopic data and comparison to reported literatures. Among them, five compounds were isolated from this plant for the first time. Ethanol extract, piperine, isopiperine, piperlonguminine, retrofractamide A, and retrofractamide C and exhibited potent ability to increase the melanin content and weak stimulative effect on the tyrosinase activity in a concentration-dependent manner. Moreover, isopiperine also presented strong capacity to increase the tyrosinase activity in a concentration-dependent manner. These results indicated that P. longum might be a good natural source of lead compound for skin disorder diseases. This study involved multiple reactions and reactants, such as (2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7Recommanded Product: (2E,4E)-N-Isobutyldeca-2,4-dienamide).

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Recommanded Product: (2E,4E)-N-Isobutyldeca-2,4-dienamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Oh, Joonseok et al. published their research in Archives of Pharmacal Research in 2010 | CAS: 18836-52-7

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Recommanded Product: 18836-52-7

Anti-listerial compounds from Asari Radix was written by Oh, Joonseok;Hwang, In Hyun;Kim, Dong Chun;Kang, Sun-Chul;Jang, Tae-Su;Lee, Seung Ho;Na, Min Kyun. And the article was included in Archives of Pharmacal Research in 2010.Recommanded Product: 18836-52-7 The following contents are mentioned in the article:

Asari Radix, the roots of Asarum heterotropoides F. Maekawa var. manshuricum F. Maekawa or A. sieboldii F. Maekawa, has traditionally been used for the treatment of various infectious diseases. Since its MeOH extract inhibited the growth of Listeria monocytogenes in a preliminary test, the aim of this study was to isolate and identify the anti-listerial compounds from the plant. Activity-guided fractionation led to the isolation of seven compounds 1-7 from the MeOH extract, and their chem. structures were identified by comparison of the spectroscopic data with those in the literature. Compounds 1-7 exhibited inhibitory activity against all five tested strains of L. monocytogenes with diameter of inhibition zones ranging from 7 to 11 mm in the agar disk diffusion method. Compounds 1-3 and 7 demonstrated potent antimicrobial effects on the L. monocytogenes strains, with MICs between 62.5 and 125 μg/mL. This is the first report that AR possesses inhibitory activity against L. monocytogenes. This study involved multiple reactions and reactants, such as (2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7Recommanded Product: 18836-52-7).

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Recommanded Product: 18836-52-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Buzon, Beverlee et al. published their research in ACS Omega in 2021 | CAS: 18836-52-7

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Category: amides-buliding-blocks

Identification of Bioactive SNM1A Inhibitors was written by Buzon, Beverlee;Grainger, Ryan A.;Rzadki, Cameron;Huang, Simon York Ming;Junop, Murray. And the article was included in ACS Omega in 2021.Category: amides-buliding-blocks The following contents are mentioned in the article:

SNM1A is a nuclease required to repair DNA interstrand cross-links (ICLs) caused by some anticancer compounds, including cisplatin. Unlike other nucleases involved in ICL repair, SNM1A is not needed to restore other forms of DNA damage. As such, SNM1A is an attractive target for selectively increasing the efficacy of ICL-based chemotherapy. Using a fluorescence-based exonuclease assay, we screened a bioactive library of compounds for inhibition of SNM1A. Of the 52 compounds initially identified as hits, 22 compounds showed dose-response inhibition of SNM1A. An orthogonal gel-based assay further confirmed nine small mols. as SNM1A nuclease activity inhibitors with IC50 values in the mid-nanomolar to low micromolar range. Finally, three compounds showed no toxicity at concentrations able to significantly potentiate the cytotoxicity of cisplatin. These compounds represent potential leads for further optimization to sensitize cells toward chemotherapeutic agents inducing ICL damage. This study involved multiple reactions and reactants, such as (2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7Category: amides-buliding-blocks).

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Category: amides-buliding-blocks

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Zhang, Xiao-Nan et al. published their research in Chemical Science in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.Application In Synthesis of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Discovery of an NAD+ analogue with enhanced specificity for PARP1 was written by Zhang, Xiao-Nan;Lam, Albert T.;Cheng, Qinqin;Courouble, Valentine V.;Strutzenberg, Timothy S.;Li, Jiawei;Wang, Yiling;Pei, Hua;Stiles, Bangyan L.;Louie, Stan G.;Griffin, Patrick R.;Zhang, Yong. And the article was included in Chemical Science in 2022.Application In Synthesis of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate The following contents are mentioned in the article:

Among various protein posttranslational modifiers, poly-ADP-ribose polymerase 1 (PARP1) is a key player for regulating numerous cellular processes and events through enzymic attachments of target proteins with ADP-ribose units donated by NAD (NAD+). Human PARP1 is involved in the pathogenesis and progression of many diseases. PARP1 inhibitors have received approvals for cancer treatment. Despite these successes, our understanding about PARP1 remains limited, partially due to the presence of various ADP-ribosylation reactions catalyzed by other PARPs and their overlapped cellular functions. Here we report a synthetic NAD+ featuring an adenosyl 3′-azido substitution. Acting as an ADP-ribose donor with high activity and specificity for human PARP1, this compound enables labeling and profiling of possible protein substrates of endogenous PARP1. It provides a unique and valuable tool for studying PARP1 in biol. and pathol. and may shed light on the development of PARP isoform-specific modulators. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Application In Synthesis of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.Application In Synthesis of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Zhang, Xiao-Nan et al. published their research in Chemical Science in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.Recommanded Product: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Discovery of an NAD+ analogue with enhanced specificity for PARP1 was written by Zhang, Xiao-Nan;Lam, Albert T.;Cheng, Qinqin;Courouble, Valentine V.;Strutzenberg, Timothy S.;Li, Jiawei;Wang, Yiling;Pei, Hua;Stiles, Bangyan L.;Louie, Stan G.;Griffin, Patrick R.;Zhang, Yong. And the article was included in Chemical Science in 2022.Recommanded Product: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate The following contents are mentioned in the article:

Among various protein posttranslational modifiers, poly-ADP-ribose polymerase 1 (PARP1) is a key player for regulating numerous cellular processes and events through enzymic attachments of target proteins with ADP-ribose units donated by NAD (NAD+). Human PARP1 is involved in the pathogenesis and progression of many diseases. PARP1 inhibitors have received approvals for cancer treatment. Despite these successes, our understanding about PARP1 remains limited, partially due to the presence of various ADP-ribosylation reactions catalyzed by other PARPs and their overlapped cellular functions. Here we report a synthetic NAD+ featuring an adenosyl 3′-azido substitution. Acting as an ADP-ribose donor with high activity and specificity for human PARP1, this compound enables labeling and profiling of possible protein substrates of endogenous PARP1. It provides a unique and valuable tool for studying PARP1 in biol. and pathol. and may shed light on the development of PARP isoform-specific modulators. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Recommanded Product: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.Recommanded Product: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Xin, Huaxia et al. published their research in Chromatographia in 2018 | CAS: 18836-52-7

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.SDS of cas: 18836-52-7

Separation of Piper kadsura using preparative Supercritical Fluid Chromatography Combined with Preparative Reversed-Phase Liquid Chromatography was written by Xin, Huaxia;Dai, Zhuoshun;Cai, Jianfeng;Ke, Yanxiong;Feng, Jiatao;Fu, Qing;Jin, Yu;Liang, Xinmiao. And the article was included in Chromatographia in 2018.SDS of cas: 18836-52-7 The following contents are mentioned in the article:

We have developed a separation strategy that employed preparative supercritical fluid chromatog. (prep-SFC) combined with preparative reversed-phase liquid chromatog. (prep-RPLC) to purify compounds from Piper kadsura. The complexity of the sample was effectively reduced by two steps of prep-SFC. The key exptl. parameters of prep-SFC were systematically optimized, including an “average-pressure rule” scaling-up method for adjustment of the back pressure of the system. A mixed modifier consisting of ethanol/n-hexane was applied to provide a stable elution. Prep-RPLC was subsequently adopted to purify the SFC fractions due to its good orthogonality with SFC. Furthermore, chiral SFC was used to sep. the structural analogs. As a result, 14 compounds with high purity were obtained from one fraction, including three pairs of diastereoisomers. These data indicate that the separation strategy using prep-SFC combined with prep-RPLC is an effective tool to sep. complex samples such as natural products. This study involved multiple reactions and reactants, such as (2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7SDS of cas: 18836-52-7).

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.SDS of cas: 18836-52-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Yu, Lan et al. published their research in Food Chemistry in 2022 | CAS: 18836-52-7

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Quality Control of (2E,4E)-N-Isobutyldeca-2,4-dienamide

Amide alkaloids characterization and neuroprotective properties of Piper nigrum L.: A comparative study with fruits, pericarp, stalks and leaves was written by Yu, Lan;Hu, Xiaolu;Xu, Rongrong;Ba, Yinying;Chen, Xiaoqing;Wang, Xing;Cao, Bing;Wu, Xia. And the article was included in Food Chemistry in 2022.Quality Control of (2E,4E)-N-Isobutyldeca-2,4-dienamide The following contents are mentioned in the article:

Piper nigrum L. is commonly used worldwide and its pericarp, stalks, leaves will be major wastes materials. 42 amide alkaloids were identified in black, white pepper and pericarp by UHPLC-LTQ-Orbitrap HRMS method, followed by 40 constituents in stalks and 36 constituents in leaves. 8 amide alkaloids were reported for the first time in P. nigrum. An ultra-high-performance supercritical fluid chromatog. (UHPSFC)-MS method was firstly applied to simultaneously determine 9 characteristic constituents (piperine, piperlonguminine, piperanine, pipercallosine, dehydropipernonaline, pipernonatine, retrofractamide B, pellitorine and guineensine). The most abundant compound in each extract was piperine with a concentration from 0.10 to 12.37 mg/g of dry weight The fruits, pericarp and leaves extracts could improve cell viability in 6-OHDA-induced SK-N-SH and SH-SY5Y cells. The results showed the characteristics of amide alkaloids of different parts of P. nigrum and evaluated their neuroprotective activities. This study involved multiple reactions and reactants, such as (2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7Quality Control of (2E,4E)-N-Isobutyldeca-2,4-dienamide).

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Quality Control of (2E,4E)-N-Isobutyldeca-2,4-dienamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Ostrakhovitch, Elena A. et al. published their research in Neuroscience Letters in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.SDS of cas: 1094-61-7

Analysis of circulating metabolites to differentiate Parkinson′s disease and essential tremor was written by Ostrakhovitch, Elena A.;Song, Eun-Suk;Macedo, Jessica K. A.;Gentry, Matthew S.;Quintero, Jorge E.;van Horne, Craig;Yamasaki, Tritia R.. And the article was included in Neuroscience Letters in 2022.SDS of cas: 1094-61-7 The following contents are mentioned in the article:

Parkinson′s disease (PD) and essential tremor (ET) are two common adult-onset tremor disorders in which prevalence increases with age. PD is a neurodegenerative condition with progressive disability. In ET, neurodegeneration is not an established etiol. We sought to determine whether an underlying metabolic pattern may differentiate ET from PD. Circulating metabolites in plasma and cerebrospinal fluid (CSF) were analyzed using gas chromatog.-mass spectroscopy. There were several disrupted pathways in PD compared to ET plasma including glycolysis, tyrosine, phenylalanine, tyrosine biosynthesis, purine and glutathione metabolism Elevated α-synuclein levels in plasma and CSF distinguished PD from ET. The perturbed metabolic state in PD was associated with imbalance in the pentose phosphate pathway, deficits in energy production, and change in NADPH, NADH and nicotinamide phosphoribosyltransferase levels. This work demonstrates significant metabolic differences in plasma and CSF of PD and ET patients. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7SDS of cas: 1094-61-7).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.SDS of cas: 1094-61-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Ostrakhovitch, Elena A. et al. published their research in Neuroscience Letters in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Synthetic Route of C11H15N2O8P

Analysis of circulating metabolites to differentiate Parkinson′s disease and essential tremor was written by Ostrakhovitch, Elena A.;Song, Eun-Suk;Macedo, Jessica K. A.;Gentry, Matthew S.;Quintero, Jorge E.;van Horne, Craig;Yamasaki, Tritia R.. And the article was included in Neuroscience Letters in 2022.Synthetic Route of C11H15N2O8P The following contents are mentioned in the article:

Parkinson′s disease (PD) and essential tremor (ET) are two common adult-onset tremor disorders in which prevalence increases with age. PD is a neurodegenerative condition with progressive disability. In ET, neurodegeneration is not an established etiol. We sought to determine whether an underlying metabolic pattern may differentiate ET from PD. Circulating metabolites in plasma and cerebrospinal fluid (CSF) were analyzed using gas chromatog.-mass spectroscopy. There were several disrupted pathways in PD compared to ET plasma including glycolysis, tyrosine, phenylalanine, tyrosine biosynthesis, purine and glutathione metabolism Elevated α-synuclein levels in plasma and CSF distinguished PD from ET. The perturbed metabolic state in PD was associated with imbalance in the pentose phosphate pathway, deficits in energy production, and change in NADPH, NADH and nicotinamide phosphoribosyltransferase levels. This work demonstrates significant metabolic differences in plasma and CSF of PD and ET patients. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Synthetic Route of C11H15N2O8P).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Synthetic Route of C11H15N2O8P

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Maass, John S. et al. published their research in Journal of Coordination Chemistry in 2016 | CAS: 53118-43-7

N1,N2-Di(pyridin-4-yl)oxalamide (cas: 53118-43-7) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.SDS of cas: 53118-43-7

Syntheses and characterization of the vanadium trimer (V33-O)O2)(μ2-O2P(CH2C6H5)2)6(4,4′-bipyridine) and the vanadium hexamer [(V33-O)O2)(μ2-O2P(CH2C6H5)2)6]22-N1,N2-di(pyridin-4-yl)oxalamide) was written by Maass, John S.;Chen, Zhichao;Zeller, Matthias;Luck, Rudy L.. And the article was included in Journal of Coordination Chemistry in 2016.SDS of cas: 53118-43-7 The following contents are mentioned in the article:

Reacting VO(acac)2 with six equivalent of dibenzylphosphinic acid in the presence of 4,4′-bipyridine or μ2-N1,N2-di(pyridin-4-yl)oxalamide leads to trimeric (V33-O)O2)(μ2-O2P(CH2C6H5)2)6(4,4′-bipyridine) or the hexamer [(V33-O)O2)(μ2-O2P(CH2C6H5)2)6]22-N1,N2-di(pyridin-4-yl)oxalamide). The complexes were characterized by spectroscopic (FTIR and 1H NMR spectroscopies), TGA, and by single crystal x-ray diffraction measurements. The structures consist of a planar central core where three vanadium ions are arranged as a quasi-isosceles triangle and contain an interstitial O which is multiply bonded to one V and weakly interacting at different bond distances to the remaining two V ions. This study involved multiple reactions and reactants, such as N1,N2-Di(pyridin-4-yl)oxalamide (cas: 53118-43-7SDS of cas: 53118-43-7).

N1,N2-Di(pyridin-4-yl)oxalamide (cas: 53118-43-7) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.SDS of cas: 53118-43-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics