Ma, Yan-Na’s team published research in Journal of the American Chemical Society in 144 | CAS: 169590-42-5

Journal of the American Chemical Society published new progress about 169590-42-5. 169590-42-5 belongs to amides-buliding-blocks, auxiliary class Sulfamide,Immunology/Inflammation,COX, name is 4-(5-(p-Tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide, and the molecular formula is C17H14F3N3O2S, Recommanded Product: 4-(5-(p-Tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide.

Ma, Yan-Na published the artcilePalladium-Catalyzed Regioselective B(9)-Amination of o-Carboranes and m-Carboranes in HFIP with Broad Nitrogen Sources, Recommanded Product: 4-(5-(p-Tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide, the publication is Journal of the American Chemical Society (2022), 144(18), 8371-8378, database is CAplus and MEDLINE.

Amination of carboranes has a good application prospect in organic and pharmaceutical synthesis. However, the current methods used for this transformation suffer from limitations. Herein, the authors report a practical method for a highly regioselective formation of a B-N bond by Pd(II)-catalyzed B(9)-H amination of o- and m-carboranes in hexafluoroisopropanol (HFIP) with different N sources under air atm. The Ag salt and HFIP solvent play critical roles in the present protocol. The mechanistic study reveals that the Ag salt acts as a Lewis acid to promote the electrophilic palladation step by forming a heterobimetallic active catalyst PdAg(OAc)3; the strong H-bond-donating ability and low nucleophilicity of HFIP enhance the electrophilic ability of Pd(II). It is believed that these N-containing carboranes are potentially of great importance in the synthesis of new pharmaceuticals.

Journal of the American Chemical Society published new progress about 169590-42-5. 169590-42-5 belongs to amides-buliding-blocks, auxiliary class Sulfamide,Immunology/Inflammation,COX, name is 4-(5-(p-Tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide, and the molecular formula is C17H14F3N3O2S, Recommanded Product: 4-(5-(p-Tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Zhang, Yuting’s team published research in Journal of Molecular Structure in 1233 | CAS: 1453-82-3

Journal of Molecular Structure published new progress about 1453-82-3. 1453-82-3 belongs to amides-buliding-blocks, auxiliary class Pyridine,Amine,Amide, name is Isonicotinamide, and the molecular formula is C16H14O6, Safety of Isonicotinamide.

Zhang, Yuting published the artcileCrystal structure of five solid forms from isonicotinamide and carboxylic acids assembled by classical hydrogen bonds and other noncovalent interactions, Safety of Isonicotinamide, the publication is Journal of Molecular Structure (2021), 130048, database is CAplus.

Cocrystn. of the commonly available isonicotinamide, with carboxylic acids gave a total of 5 new anhydrous and hydrous multicomponent solid forms: (isonicotinamide)2: (suberic acid) [(L)2·(H2sub), H2sub = suberic acid] (1), (isonicotinamide)2: (α-ketoglutaric acid): H2O [(HL+)2·(kga2-)·H2O, kga2- = α-ketoglutarate] (2), (isonicotinamide): (1,2-phenylenediacetic acid) [(L)·(H2pda), H2pda = 1,2-phenylenediacetic acid] (3), (isonicotinamide): (4-nitrophthalic acid) [(HL+)·(Hnpta), Hnpta = 4-nitrohydrogenphthalate] (4) and (isonicotinamide)4: (butane-1,2,3,4-tetracarboxylic acid) [(L)4·(H4bta), H4bta = butane-1,2,3,4-tetracarboxylic acid] (5). The 5 solid forms were characterized by XRD, IR and EA and their m.ps. were also reported. Their structural and supramol. aspects are fully analyzed. 2 and 4 are organic salts with only the aryl N in L protonated, 1, 3 and 5 are co-crystals. The crystal packing is interpreted by the strong N-H···O, O-H···N and O-H···O H bonds. The carboxamide dimers were existed in all solid forms by a pair of N-H···O H bonds. Further inspection of the crystal packing told that a different set of addnl. CH-O/CH2-O, CH-N, O-C, O-O, O-N, O-π and π-π associations contribute to the stabilization and expansion of the total high-dimensional (2D-3D) structures. For the delicate balance of the various weak nonbonding interactions these structures adopted homo/hetero supramol. synthons or both and the common R12(7) and R22(8) graph sets were observed in all solid forms due to the interplay of H bonds and noncovalent associations

Journal of Molecular Structure published new progress about 1453-82-3. 1453-82-3 belongs to amides-buliding-blocks, auxiliary class Pyridine,Amine,Amide, name is Isonicotinamide, and the molecular formula is C16H14O6, Safety of Isonicotinamide.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Wang, Xiaojuan’s team published research in Crystal Growth & Design in 20 | CAS: 1453-82-3

Crystal Growth & Design published new progress about 1453-82-3. 1453-82-3 belongs to amides-buliding-blocks, auxiliary class Pyridine,Amine,Amide, name is Isonicotinamide, and the molecular formula is C6H12Br2, Computed Properties of 1453-82-3.

Wang, Xiaojuan published the artcileCollecting the Molecular and Ionization States of Irbesartan in the Solid State, Computed Properties of 1453-82-3, the publication is Crystal Growth & Design (2020), 20(9), 5664-5669, database is CAplus.

An active pharmaceutical ingredient may exist in different solid forms, which are the products of the variation of mol. conformation and packing order stabilized through different intermol. interactions. Two special conditions, tautomerism and amphoterism, will make the solid-state landscape more abundant and diverse. Two known polymorphs of irbesartan (IBS) contain mols. in different tautomeric forms, resp. Here, one cationic salt and one anionic salt of IBS were successfully harvested. The NMR spectra demonstrated clear fingerprint features for these four different mol. and ionization states of IBS. The newly obtained crystalline forms also provide much better dissolution performance. Irbesartan can exist in 1H-tautomeric, 2H-tautomeric, cationic, and anionic states in different crystalline samples.

Crystal Growth & Design published new progress about 1453-82-3. 1453-82-3 belongs to amides-buliding-blocks, auxiliary class Pyridine,Amine,Amide, name is Isonicotinamide, and the molecular formula is C6H12Br2, Computed Properties of 1453-82-3.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Liu, H Z’s team published research in Zhonghua xin xue guan bing za zhi in 50 | CAS: 137862-53-4

Zhonghua xin xue guan bing za zhi published new progress about 137862-53-4. 137862-53-4 belongs to amides-buliding-blocks, auxiliary class GPCR/G Protein,Angiotensin Receptor, name is (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid, and the molecular formula is C24H29N5O3, Related Products of amides-buliding-blocks.

Liu, H Z published the artcile[Sacubitril/valsartan attenuates left ventricular remodeling and improve cardiac function by upregulating apelin/APJ pathway in rats with heart failure]., Related Products of amides-buliding-blocks, the publication is Zhonghua xin xue guan bing za zhi (2022), 50(7), 690-697, database is MEDLINE.

Objective: To investigate the effect and mechanism of sacubitril/valsartan on left ventricular remodeling and cardiac function in rats with heart failure. Methods: A total of 46 SPF-grade male Wistar rats weighed 300-350 g were acclimatized to the laboratory for 7 days. Rats were then divided into 4 groups: the heart failure group (n=12, intraperitoneal injection of adriamycin hydrochloride 2.5 mg/kg once a week for 6 consecutive weeks, establishing a model of heart failure); heart failure+sacubitril/valsartan group (treatment group, n=12, intragastric administration with sacubitril/valsartan 1 week before the first injection of adriamycin, at a dose of 60 mg·kg-1·d-1 for 7 weeks); heart failure+sacubitril/valsartan+APJ antagonist F13A group (F13A group, n=12, adriamycin and sacubitril/valsartan, intraperitoneal injection of 100 μg·kg-1·d-1 APJ antagonist F13A for 7 weeks) and control group (n=10, intraperitoneal injection of equal volume of normal saline). One week after the last injection of adriamycin or saline, transthoracic echocardiography was performed to detect the cardiac structure and function, and then the rats were executed, blood and left ventricular specimens were obtained for further analysis. Hematoxylin-eosin staining and Masson trichrome staining were performed to analyze the left ventricular pathological change and myocardial fibrosis. TUNEL staining was performed to detect cardiomyocyte apoptosis. mRNA expression of left ventricular myocardial apelin and APJ was detected by RT-qRCR. ELISA was performed to detect plasma apelin-12 concentration. The protein expression of left ventricular myocardial apelin and APJ was detected by Western blot. Results: Seven rats survived in the heart failure group, 10 in the treatment group, and 8 in the F13A group. Echocardiography showed that the left ventricular end-diastolic diameter (LVEDD) and the left ventricular end-systolic diameter (LVESD) were higher (both P<0.05), while the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were lower in the heart failure group than in the control group (both P<0.05). Compared with the heart failure group, rats in the treatment group were featured with lower LVEDD and LVESD (both P<0.05), higher LVEF and LVFS (both P<0.05), these beneficial effects were reversed in rats assigned to F13A group (all P<0.05 vs. treatment group). The results of HE staining showed that the cardiomyocytes of rats in the control group were arranged neatly and densely structured, the cardiomyocytes in the heart failure group were arranged in disorder, distorted and the gap between cells was increased, the cardiomyocytes in the treatment group were slightly neat and dense, and cardiomyocytes in the F13A group were featured similarly as the heart failure group. Masson staining showed that there were small amount of collagen fibers in the left ventricular myocardial interstitium of the control group, while left ventricular myocardial fibrosis was significantly increased, and collagen volume fraction (CVF) was significantly higher in the heart failure group than that of the control group (P<0.05). Compared with the heart failure group, the left ventricular myocardial fibrosis and the CVF were reduced in the treatment group (both P<0.05), these effects were reversed in the F13A group (all P<0.05 vs. treatment group). TUNEL staining showed that the apoptosis index (AI) of cardiomyocytes in rats was higher in the heart failure group compared with the control group (P<0.05), which was reduced in the treatment group (P<0.05 vs. heart failure group), this effect again was reversed in the F13A group (P<0.05 vs. treatment group). The results of RT-qPCR and Western blot showed that the mRNA and protein levels of apelin and APJ in left ventricular myocardial tissue of rats were downregulated in heart failure group (all P<0.05) compared with the control group. Compared with the heart failure group, the mRNA and protein levels of apelin and APJ were upregulated in the treatment group (all P<0.05), these effects were reversed in the F13A group (all P<0.05 vs. treatment group). ELISA test showed that the plasma apelin concentration of rats was lower in the heart failure group compared with the control group (P<0.05); compared with the heart failure group, the plasma apelin concentration of rats was higher in the treatment group (P<0.05), this effect was reversed in the F13A group (P<0.05 vs. treatment group). Conclusion: Sacubitril/valsartan can partially reverse left ventricular remodeling and improve cardiac function in rats with heart failure through modulating Apelin/APJ pathways.

Zhonghua xin xue guan bing za zhi published new progress about 137862-53-4. 137862-53-4 belongs to amides-buliding-blocks, auxiliary class GPCR/G Protein,Angiotensin Receptor, name is (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid, and the molecular formula is C24H29N5O3, Related Products of amides-buliding-blocks.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Bigott, Yvonne’s team published research in Science of the Total Environment in 831 | CAS: 137862-53-4

Science of the Total Environment published new progress about 137862-53-4. 137862-53-4 belongs to amides-buliding-blocks, auxiliary class GPCR/G Protein,Angiotensin Receptor, name is (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid, and the molecular formula is C24H29N5O3, Recommanded Product: (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid.

Bigott, Yvonne published the artcileFate and impact of wastewater-borne micropollutants in lettuce and the root-associated bacteria, Recommanded Product: (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid, the publication is Science of the Total Environment (2022), 154674, database is CAplus and MEDLINE.

The reuse of water for agricultural practices becomes progressively more important due to increasing demands for a transition to a circular economy. Treated wastewater can be an alternative option of blue water used for the irrigation of crops but its risks need to be evaluated. This study assesses the uptake and metabolization of pharmaceuticals and personal care products (PPCPs) derived from treated wastewater into lettuce as well as the impact on root-associated bacteria under a realistic and worst-case scenario. Lettuce was grown in a controlled greenhouse and irrigated with water or treated wastewater spiked with and without a mixture of fourteen different PPCPs at 10μg/L or 100μg/L. After harvesting the plants, the same soil was reused for a consecutive cultivation campaign to test for the accumulation of PPCPs. Twelve out of fourteen spiked PPCPs were detected in lettuce roots, and thirteen in leaves. In roots, highest concentrations were measured for sucralose, sulfamethoxazole and citalopram, while sucralose, acesulfame and carbamazepine were the highest in leaves. Higher PPCP concentrations were found in lettuce roots irrigated with spiked treated wastewater than in those irrigated with spiked water. The absolute bacterial abundance remained stable over both cultivation campaigns and was not affected by any of the treatments (type of irrigation water (water vs. wastewater) nor concentration of PPCPs). However, the irrigation of lettuce with treated wastewater had a significant effect on the microbial α-diversity indexes at the end of the second cultivation campaign, and modified the structure and community composition of root-associated bacteria at the end of both campaigns. Five and fourteen bacterial families were shown to be responsible for the observed changes at the end of the first and second cultivation campaign, resp. Relative abundance of Haliangium and the clade Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium was significantly affected in response to PCPPs exposure. Caulobacter, Cellvibrio, Hydrogenophaga and Rhizobacter were significantly affected in microcosms irrigated with wastewater.

Science of the Total Environment published new progress about 137862-53-4. 137862-53-4 belongs to amides-buliding-blocks, auxiliary class GPCR/G Protein,Angiotensin Receptor, name is (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid, and the molecular formula is C24H29N5O3, Recommanded Product: (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Eysseric, Emmanuel’s team published research in Science of the Total Environment in 822 | CAS: 137862-53-4

Science of the Total Environment published new progress about 137862-53-4. 137862-53-4 belongs to amides-buliding-blocks, auxiliary class GPCR/G Protein,Angiotensin Receptor, name is (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid, and the molecular formula is C24H29N5O3, Recommanded Product: (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid.

Eysseric, Emmanuel published the artcileIdentifying congeners and transformation products of organic contaminants within complex chemical mixtures in impacted surface waters with a top-down non-targeted screening workflow, Recommanded Product: (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid, the publication is Science of the Total Environment (2022), 153540, database is CAplus and MEDLINE.

Over 350,000 compounds are registered for production and use including a high number of congeners found in complex chem. mixtures (CCMs). With such a high number of chems. being released in the environment and degraded into transformation products (TPs), the challenge of identifying contaminants by non-targeted screening (NTS) is massive. “Bottom-up” studies, where compounds are subjected to conditions simulating environmental degradation to identify new TPs, are time consuming and cannot be relied upon to study the TPs of hundreds of thousands of compounds Therefore, the development of “top-down” workflows, where the structural elucidation of unknown compounds is carried directly on the sample, is of interest. In this study, a top-down NTS workflow was developed using mol. networking and clustering (MNC). A total of 438 compounds were identified including 176 congeners of consumer product additives and 106 TPs. Reference standards were used to confirm the identification of 53 contaminants among them lesser-known pharmaceuticals (aliskiren, sitagliptin) and consumer product additives (lauramidopropyl betaine, 2,2,4-trimethyl-1,2-dihydroquinoline). The MNC tools allowed to group similar TPs and congeners together. As such, several previously unknown TPs of pesticides (metolachlor) and pharmaceuticals (gliclazide, irbesartan) were identified as tentative candidates or probable structures. Moreover, some congeners that had no entry on global repositories (PubChem, ChemSpider) were identified as probable structures. The workflow worked efficiently with oligomers containing ethylene oxide moieties, and with TPs structurally related to their parent compounds The top-down approach shown in this study addresses several issues with the identification of congeners of industrial compounds from CCMs. Furthermore, it allows elucidating the structure of TPs directly from samples without relying on bottom-up studies under conditions discussed herein. The top-down workflow and the MNC tools show great potential for data mining and retrospective anal. of previous NTS studies.

Science of the Total Environment published new progress about 137862-53-4. 137862-53-4 belongs to amides-buliding-blocks, auxiliary class GPCR/G Protein,Angiotensin Receptor, name is (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid, and the molecular formula is C24H29N5O3, Recommanded Product: (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Schneider, Nils’s team published research in ACS Chemical Biology in 13 | CAS: 2418-95-3

ACS Chemical Biology published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Quality Control of 2418-95-3.

Schneider, Nils published the artcileGenetic Code Expansion Method for Temporal Labeling of Endogenously Expressed Proteins, Quality Control of 2418-95-3, the publication is ACS Chemical Biology (2018), 13(11), 3049-3053, database is CAplus and MEDLINE.

The authors here present a method that combines genetic code expansion with CRISPR/Cas9 genome engineering to label endogenously expressed proteins with high spatiotemporal resolution The method exploits the use of an orthogonal tRNA/tRNA synthetase pair in conjugation with noncanonical amino acids to create stop codon read through events. To demonstrate the functionality of the method, the authors pulse labeled endogenous β-actin and tumor protein p53 with a minimally invasive HA tag at their C-termini. Targeting the protein label with a proximity ligation assay plus real time imaging facilitates seamless quantification of the protein synthesis rate and spatial localization at the single cell level. The presented approach does not interfere with any physiol. control of cellular expression, nor did any perturbation of endogenous protein functions. were observed

ACS Chemical Biology published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Quality Control of 2418-95-3.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Cecil, Denise L.’s team published research in Cancer Prevention Research in 15 | CAS: 169590-42-5

Cancer Prevention Research published new progress about 169590-42-5. 169590-42-5 belongs to amides-buliding-blocks, auxiliary class Sulfamide,Immunology/Inflammation,COX, name is 4-(5-(p-Tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide, and the molecular formula is C17H14F3N3O2S, Category: amides-buliding-blocks.

Cecil, Denise L. published the artcileCOX-2 inhibitors decrease expression of PD-L1 in colon tumors and increase the influx of type I tumor-infiltrating lymphocytes, Category: amides-buliding-blocks, the publication is Cancer Prevention Research (2022), 15(4), 225-231, database is CAplus and MEDLINE.

Colon cancer is initiated under inflammatory conditions associated with upregulation of immune checkpoint proteins. We evaluated immune modulation induced by nonsteroidal anti-inflammatory agents used for colon cancer prevention. Both celecoxib and naproxen inhibited polyp growth in APC Min mice. Treatment of mice with either drug significantly decreased PD-L1 expression on polyps in a dose-dependent manner (P < 0.0001 for both). The decrease in PD-L1 was associated with an influx of CD8+ T cells into polyps (P < 0.0001, celecoxib; P = 0.048, naproxen) compared with lesions from untreated animals and correlated with disease control. Naproxen is a nonselective inhibitor of both COX-1 and COX-2, and we questioned the role of the different cyclooxygenases in PD-L1 regulation. Silencing either COX-2 or COX-1 RNA in the murine colon cancer cell line MC38, reduced PD-L1 expression by 86% in COX-2-silenced cells (P < 0.0001) while there was little effect with COX-1 siRNA compared with control. Naproxen could inhibit the growth of MC38 in vivo. Naproxen-treated mice demonstrated a significant reduction in MC38 growth as compared with control (P < 0001). Both Tbet+ CD4 and CD8 tumor-infiltrating lymphocytes (TIL) were significantly increased (P = 0.04 and P = 0.038, resp.) without a concurrent increase in GATA3+ TIL (P > 0.05). CD8+ TIL highly expressed the activation marker, CD69. Not only was PD-L1 expression decreased on tumors, but LAG3+CD8+ T cells and PD-1 and LAG3 expression on regulatory T cells was also reduced (P = 0.008 and P = 0.002, resp.). These data demonstrate COX-2 inhibitors significantly decrease PD-L1 in colonic lesions and favorably impact the phenotype of tumor-infiltrating lymphocytes to control tumor growth.

Cancer Prevention Research published new progress about 169590-42-5. 169590-42-5 belongs to amides-buliding-blocks, auxiliary class Sulfamide,Immunology/Inflammation,COX, name is 4-(5-(p-Tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide, and the molecular formula is C17H14F3N3O2S, Category: amides-buliding-blocks.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Robertson, Wesley E.’s team published research in Science (Washington, DC, United States) in 372 | CAS: 2418-95-3

Science (Washington, DC, United States) published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Formula: C11H22N2O4.

Robertson, Wesley E. published the artcileSense codon reassignment enables viral resistance and encoded polymer synthesis, Formula: C11H22N2O4, the publication is Science (Washington, DC, United States) (2021), 372(6546), 1057-1062, database is CAplus and MEDLINE.

It is widely hypothesized that removing cellular tRNAs (tRNAs)-making their cognate codons unreadable-might create a genetic firewall to viral infection and enable sense codon reassignment. However, it has been impossible to test these hypotheses. In this work, following synonymous codon compression and laboratory evolution in Escherichia coli, we deleted the tRNAs and release factor 1, which normally decode two sense codons and a stop codon; the resulting cells could not read the canonical genetic code and were completely resistant to a cocktail of viruses. We reassigned these codons to enable the efficient synthesis of proteins containing three distinct noncanonical amino acids. Notably, we demonstrate the facile reprogramming of our cells for the encoded translation of diverse noncanonical heteropolymers and macrocycles.

Science (Washington, DC, United States) published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Formula: C11H22N2O4.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Igase, Masaya’s team published research in Experimental Cell Research in 388 | CAS: 1011557-82-6

Experimental Cell Research published new progress about 1011557-82-6. 1011557-82-6 belongs to amides-buliding-blocks, auxiliary class Epigenetics,Sirtuin, name is 4-(tert-Butyl)-N-((4-(5-(dimethylamino)pentanamido)phenyl)carbamothioyl)benzamide, and the molecular formula is C25H34N4O2S, Category: amides-buliding-blocks.

Igase, Masaya published the artcileTenovin-6 induces the SIRT-independent cell growth suppression and blocks autophagy flux in canine hemangiosarcoma cell lines, Category: amides-buliding-blocks, the publication is Experimental Cell Research (2020), 388(1), 111810, database is CAplus and MEDLINE.

Canine hemangiosarcoma (HSA) is a commonly occurring aggressive tumor stemming from the vascular endothelial cells and is considered to be a good model for a similar disease in humans, called angiosarcoma. In this study, we reviewed drug libraries to identify new signal transduction inhibitors that can suppress the cell growth of canine HSA in vitro. We observed that tenovin-6, a sirtuin (SIRT) inhibitor, inhibited cell proliferation and induced cell death in three canine HSA cell lines (JuB4, Re12, and Ud6). These effects were induced through G1 cell cycle arrest and caspase-3 activation. Although tenovin-6 is known as an inhibitor of SIRT1 and SIRT2, knockout (KO) of genes encoding SIRT1 and/or SIRT2 had no apparent impact on cell proliferation in canine HSA. In addition, tenovin-6 showed cell growth inhibition in SIRT KO cells, as well as parental cells. These results indicated the cytotoxicity of tenovin-6 was a SIRT-independent event. Instead, we found that tenovin-6 inhibited autophagy flux in canine HSA cells, as evidenced by the suppression of lysosomal proteolysis. These results suggested that tenovin-6 induces cell growth suppression in canine HSA cells by impairing the lysosomal function. Therefore, tenovin-6 could be used in a new therapeutic strategy to treat canine HSA.

Experimental Cell Research published new progress about 1011557-82-6. 1011557-82-6 belongs to amides-buliding-blocks, auxiliary class Epigenetics,Sirtuin, name is 4-(tert-Butyl)-N-((4-(5-(dimethylamino)pentanamido)phenyl)carbamothioyl)benzamide, and the molecular formula is C25H34N4O2S, Category: amides-buliding-blocks.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics