Yang, Fengyuan Mandy et al. published their research in Frontiers in Immunology in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Recommanded Product: 1094-61-7

DMGV is a rheostat of T cell survival and a potential therapeutic for inflammatory diseases and cancers was written by Yang, Fengyuan Mandy;Shen, Liya;Fan, Dengxia Denise;Chen, Kuan-Hung;Lee, Jongdae. And the article was included in Frontiers in Immunology in 2022.Recommanded Product: 1094-61-7 The following contents are mentioned in the article:

Activated effector T cells (Teff) and/or compromised regulatory T cells (Treg) underlie many chronic inflammatory diseases. We discovered a novel pathway to regulate survival and expansion of Teff without compromising Treg survival and a potential therapeutic to treat these diseases. We found dimethylguanidino valeric acid (DMGV) as a rheostat for Teff survival: while cell-intrinsic DMGV generated by Alanine-Glyoxylate Aminotransferase 2 (AGXT2) is essential for survival and expansion by inducing mitochondrial ROS and regulation of glycolysis, an excessive (or exogenous) DMGV level inhibits activated Teff survival, thereby the AGXT2-DMGV-ROS axis functioning as a switch to turn on and off Teff expansion. DMGV-induced ROS is essential for glycolysis in Teff, and paradoxically DMGV induces ROS only when glycolysis is active. Mechanistically, DMGV rapidly activates mitochondrial calcium uniporter (MCU), causing a surge in mitochondrial Ca2+ without provoking calcium influx to the cytosol. The mitochondrial Ca2+ surge in turn triggers the mitochondrial Na+ /Ca2+ exchanger (NCLX) and the subsequent mitochondrial Na+ import induces ROS by uncoupling the Coenzyme Q cycle in Complex III of the electron transport chain. In preclin. studies, DMGV administration significantly diminished the number of inflammatory T cells, effectively suppressing chronic inflammation in mouse models of colitis and rheumatoid arthritis. DMGV also suppressed expansion of cancer cells in vitro and in a mouse T cell leukemic model by the same mechanism. Our data provide a new pathway regulating T cell survival and a novel mode to treat autoimmune diseases and cancers. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Recommanded Product: 1094-61-7).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Recommanded Product: 1094-61-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Li, Zilin et al. published their research in Nature (London, United Kingdom) in 2021 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11 was written by Li, Zilin;Liu, Wang;Fu, Jiaqi;Cheng, Sen;Xu, Yue;Wang, Zhiqiang;Liu, Xiaofan;Shi, Xuyan;Liu, Yaxin;Qi, Xiangbing;Liu, Xiaoyun;Ding, Jingjin;Shao, Feng. And the article was included in Nature (London, United Kingdom) in 2021.Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate The following contents are mentioned in the article:

Mouse caspase-11 and human caspase-4 and caspase-5 recognize cytosolic lipopolysaccharide (LPS) to induce pyroptosis by cleaving the pore-forming protein GSDMD1-5. This non-canonical inflammasome defends against Gram-neg. bacteria6,7. Shigella flexneri, which causes bacillary dysentery, lives freely within the host cytosol where these caspases reside. However, the role of caspase-11-mediated pyroptosis in S. flexneri infection is unknown. Here we show that caspase-11 did not protect mice from S. flexneri infection, in contrast to infection with another cytosolic bacterium, Burkholderia thailandensis8. S. flexneri evaded pyroptosis mediated by caspase-11 or caspase 4 (hereafter referred to as caspase-11/4) using a type III secretion system (T3SS) effector, OspC3. OspC3, but not its paralogues OspC1 and 2, covalently modified caspase-11/4; although it used the NAD+ donor, this modification was not ADP-ribosylation. Biochem. dissections uncovered an ADP-riboxanation modification on Arg314 and Arg310 in caspase-4 and caspase-11, resp. The enzymic activity was shared by OspC1 and 2, whose ankyrin-repeat domains, unlike that of OspC3, could not recognize caspase-11/4. ADP-riboxanation of the arginine blocked autoprocessing of caspase-4/11 as well as their recognition and cleavage of GSDMD. ADP-riboxanation of caspase-11 paralysed pyroptosis-mediated defense in Shigella-infected mice and mutation of ospC3 stimulated caspase-11- and GSDMD-dependent anti-Shigella humoral immunity, generating a vaccine-like protective effect. Our study establishes ADP-riboxanation of arginine as a bacterial virulence mechanism that prevents LPS-induced pyroptosis. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Li, Zilin et al. published their research in Nature (London, United Kingdom) in 2021 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Application of 1094-61-7

Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11 was written by Li, Zilin;Liu, Wang;Fu, Jiaqi;Cheng, Sen;Xu, Yue;Wang, Zhiqiang;Liu, Xiaofan;Shi, Xuyan;Liu, Yaxin;Qi, Xiangbing;Liu, Xiaoyun;Ding, Jingjin;Shao, Feng. And the article was included in Nature (London, United Kingdom) in 2021.Application of 1094-61-7 The following contents are mentioned in the article:

Mouse caspase-11 and human caspase-4 and caspase-5 recognize cytosolic lipopolysaccharide (LPS) to induce pyroptosis by cleaving the pore-forming protein GSDMD1-5. This non-canonical inflammasome defends against Gram-neg. bacteria6,7. Shigella flexneri, which causes bacillary dysentery, lives freely within the host cytosol where these caspases reside. However, the role of caspase-11-mediated pyroptosis in S. flexneri infection is unknown. Here we show that caspase-11 did not protect mice from S. flexneri infection, in contrast to infection with another cytosolic bacterium, Burkholderia thailandensis8. S. flexneri evaded pyroptosis mediated by caspase-11 or caspase 4 (hereafter referred to as caspase-11/4) using a type III secretion system (T3SS) effector, OspC3. OspC3, but not its paralogues OspC1 and 2, covalently modified caspase-11/4; although it used the NAD+ donor, this modification was not ADP-ribosylation. Biochem. dissections uncovered an ADP-riboxanation modification on Arg314 and Arg310 in caspase-4 and caspase-11, resp. The enzymic activity was shared by OspC1 and 2, whose ankyrin-repeat domains, unlike that of OspC3, could not recognize caspase-11/4. ADP-riboxanation of the arginine blocked autoprocessing of caspase-4/11 as well as their recognition and cleavage of GSDMD. ADP-riboxanation of caspase-11 paralysed pyroptosis-mediated defense in Shigella-infected mice and mutation of ospC3 stimulated caspase-11- and GSDMD-dependent anti-Shigella humoral immunity, generating a vaccine-like protective effect. Our study establishes ADP-riboxanation of arginine as a bacterial virulence mechanism that prevents LPS-induced pyroptosis. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Application of 1094-61-7).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Application of 1094-61-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Perumalsamy, Haribalan et al. published their research in Journal of Agricultural and Food Chemistry in 2010 | CAS: 18836-52-7

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Recommanded Product: (2E,4E)-N-Isobutyldeca-2,4-dienamide

Larvicidal Activity of Asarum heterotropoides Root Constituents against Insecticide-Susceptible and -Resistant Culex pipiens pallens and Aedes aegypti and Ochlerotatus togoi was written by Perumalsamy, Haribalan;Chang, Kyu Sik;Park, Chan;Ahn, Young-Joon. And the article was included in Journal of Agricultural and Food Chemistry in 2010.Recommanded Product: (2E,4E)-N-Isobutyldeca-2,4-dienamide The following contents are mentioned in the article:

We investigated the toxicity of (-)-asarinin, α-asarone, methyleugenol, pellitorine, and pentadecane identified in Asarum heterotropoides root to third instar larvae from insecticide-susceptible Culex pipiens pallens (KS-CP strain), Aedes aegypti, and Ochlerotatus togoi as well as field-collected C. p. pallens (DJ-CP colony), identified by polymerase chain reaction. Results were compared with those of two conventional mosquito larvicides: fenthion and temephos. Pellitorine (LC50, 2.08, 2.33, and 2.38 ppm) was 5.5, 10.8, and 25.6 times, 4.5, 11.6, and 24.7 times, and 6.9, 11.1, and 24.6 times more toxic than (-)-asarinin, α-asarone, and methyleugenol against susceptible C. p. pallens, A. aegypti, and O. togoi larvae, resp. Pentadecane was least toxic. Overall, all the compounds were less toxic than either fenthion or temephos. However, these compounds did not differ in toxicity against larvae from the two Culex strains, even though the DJ-CP larvae exhibited high levels of resistance to fenthion (resistance ratio (RR), 1179), chlorpyrifos (RR, 1174), fenitrothion (RR, 428), deltamethrin (RR, 316), chlorfenapyr (RR, 225), and α-cypermethrin (RR, 94). This finding indicates that the isolated compounds and the pyrethroid, organophosphorus, and pyrrole insecticides do not share a common mode of action or elicit cross-resistance. A. heterotropoides root-derived materials, particularly (-)-asarinin and pellitorine, merit further study as potential mosquito larvicides for the control of insecticide-resistant mosquito populations in light of global efforts to reduce the level of highly toxic synthetic insecticides in the aquatic environment. This study involved multiple reactions and reactants, such as (2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7Recommanded Product: (2E,4E)-N-Isobutyldeca-2,4-dienamide).

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Recommanded Product: (2E,4E)-N-Isobutyldeca-2,4-dienamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Lima, Rita de Cassia L. et al. published their research in Journal of Natural Products in 2017 | CAS: 18836-52-7

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Name: (2E,4E)-N-Isobutyldeca-2,4-dienamide

Advancing HPLC-PDA-HRMS-SPE-NMR Analysis of Coumarins in Coleonema album by Use of Orthogonal Reversed-Phase C18 and Pentafluorophenyl Separations was written by Lima, Rita de Cassia L.;Gramsbergen, Simone M.;Van Staden, Johannes;Jager, Anna K.;Kongstad, Kenneth T.;Staerk, Dan. And the article was included in Journal of Natural Products in 2017.Name: (2E,4E)-N-Isobutyldeca-2,4-dienamide The following contents are mentioned in the article:

A hyphenated procedure involving high-performance liquid chromatog., photodiode array detection, high-resolution mass spectrometry, solid-phase extraction, and NMR spectroscopy, i.e., HPLC-PDA-HRMS-SPE-NMR, has proven an effective technique for the identification of compounds in complex matrixes. Most HPLC-PDA-HRMS-SPE-NMR investigations reported so far have relied on anal.-scale reversed-phase C18 columns for separation Herein is reported the use of an anal.-scale pentafluorophenyl column as an orthogonal separation method following fractionation of a crude Et acetate extract of leaves of Coleonema album on a preparative-scale C18 column. This setup allowed the HPLC-PDA-HRMS-SPE-NMR anal. of 23 coumarins, including six new compounds, 8-O-β-D-glucopyranosyloxy-6-(2,3-dihydroxy-3-methylbut-1-yl)-7-methoxycoumarin (4), (Z)-6-(4-β-D-glucopyranosyloxy-3-methylbut-2-en-1-yl)-7-hydroxycoumarin (6), 6-(4-β-D-glucopyranosyloxy-3-methylbut-1-yl)-7-hydroxycoumarin (8), (Z)-7-(4-β-D-glucopyranosyloxy-3-methylbut-2-en-1-yloxy)coumarin (13), (S)-8-(3-chloro-2-hydroxy-3-methylbut-1-yloxy)-7-methoxycoumarin (19), and 7-(3-chloro-2-hydroxy-3-methylbut-1-yloxy)coumarin (20). The use of the pentafluorophenyl column even allowed separation of several regioisomers that are usually difficult to sep. using reversed-phase C18 columns. The phytochem. investigation described for C. album in this report demonstrates the potential and wide applicability of HPLC-PDA-HRMS-SPE-NMR for accelerated structural identification of natural products in complex mixtures This study involved multiple reactions and reactants, such as (2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7Name: (2E,4E)-N-Isobutyldeca-2,4-dienamide).

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Name: (2E,4E)-N-Isobutyldeca-2,4-dienamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Nation, Catherine S. et al. published their research in Biochemical Journal in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Application of 1094-61-7

NAD-catabolizing ectoenzymes of Schistosoma mansoni was written by Nation, Catherine S.;Da’Dara, Akram A.;Skelly, Patrick J.. And the article was included in Biochemical Journal in 2022.Application of 1094-61-7 The following contents are mentioned in the article:

Infection with schistosomes (blood flukes) can result in the debilitating disease schistosomiasis. These parasites survive in their host for many years, and we hypothesize that proteins on their tegumental surface, interacting with the host microenvironment, facilitate longevity. One such ectoenzyme – the nucleotide pyrophosphatase/phosphodiesterase SmNPP5 can cleave ADP (to prevent platelet aggregation) and NAD (likely preventing Treg apoptosis). A second tegumental ectoenzyme, the glycohydrolase SmNACE, also catabolizes NAD. Here, we undertake a comparative biochem. characterization of these parasite ectoenzymes. Both are GPI-linked and exhibit different optimal pH ranges. While SmNPP5 requires divalent cations, SmNACE does not. The KM values of the two enzymes for NAD at physiol. pH differ: SmNPP5, KM = 340μM ± 44; SmNACE, KM = 49μM ± 4. NAD cleavage by each enzyme yields different products. SmNPP5 cleaves NAD to form NMN (NMN) and AMP, whereas SmNACE cleaves NAD to generate nicotinamide (NAM) and ADP ribose (ADPR). Each enzyme can process the other’s reaction product. Thus, SmNACE cleaves NMN (to yield NAM and ribose phosphate) and SmNPP5 cleaves ADPR (yielding AMP and ribose phosphate). Metabolomic anal. of plasma containing adult worms supports the idea that these cleavage pathways are active in vivo. We hypothesize that a primary function of SmNPP5 is to cleave NAD to control host immune cell function and a primary function of SmNACE is to cleave NMN to generate the vital nutrient nicotinamide (vitamin B3) for convenient uptake by the worms. Chem. inhibition of one or both ectoenzymes could upset worm metabolism and control schistosome infection. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Application of 1094-61-7).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Application of 1094-61-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Nation, Catherine S. et al. published their research in Biochemical Journal in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Synthetic Route of C11H15N2O8P

NAD-catabolizing ectoenzymes of Schistosoma mansoni was written by Nation, Catherine S.;Da’Dara, Akram A.;Skelly, Patrick J.. And the article was included in Biochemical Journal in 2022.Synthetic Route of C11H15N2O8P The following contents are mentioned in the article:

Infection with schistosomes (blood flukes) can result in the debilitating disease schistosomiasis. These parasites survive in their host for many years, and we hypothesize that proteins on their tegumental surface, interacting with the host microenvironment, facilitate longevity. One such ectoenzyme – the nucleotide pyrophosphatase/phosphodiesterase SmNPP5 can cleave ADP (to prevent platelet aggregation) and NAD (likely preventing Treg apoptosis). A second tegumental ectoenzyme, the glycohydrolase SmNACE, also catabolizes NAD. Here, we undertake a comparative biochem. characterization of these parasite ectoenzymes. Both are GPI-linked and exhibit different optimal pH ranges. While SmNPP5 requires divalent cations, SmNACE does not. The KM values of the two enzymes for NAD at physiol. pH differ: SmNPP5, KM = 340μM ± 44; SmNACE, KM = 49μM ± 4. NAD cleavage by each enzyme yields different products. SmNPP5 cleaves NAD to form NMN (NMN) and AMP, whereas SmNACE cleaves NAD to generate nicotinamide (NAM) and ADP ribose (ADPR). Each enzyme can process the other’s reaction product. Thus, SmNACE cleaves NMN (to yield NAM and ribose phosphate) and SmNPP5 cleaves ADPR (yielding AMP and ribose phosphate). Metabolomic anal. of plasma containing adult worms supports the idea that these cleavage pathways are active in vivo. We hypothesize that a primary function of SmNPP5 is to cleave NAD to control host immune cell function and a primary function of SmNACE is to cleave NMN to generate the vital nutrient nicotinamide (vitamin B3) for convenient uptake by the worms. Chem. inhibition of one or both ectoenzymes could upset worm metabolism and control schistosome infection. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Synthetic Route of C11H15N2O8P).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Synthetic Route of C11H15N2O8P

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Pollard, Charley-Lea et al. published their research in The Journal of reproduction and development in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.Electric Literature of C11H15N2O8P

Insights into the NAD+ biosynthesis pathways involved during meiotic maturation and spindle formation in porcine oocytes. was written by Pollard, Charley-Lea;Younan, Ashleigh;Swegen, Aleona;Gibb, Zamira;Grupen, Christopher G. And the article was included in The Journal of reproduction and development in 2022.Electric Literature of C11H15N2O8P The following contents are mentioned in the article:

Treatments that elevate NAD+ levels have been found to improve oocyte quality in mice, cattle, and pigs, suggesting that NAD+ is vital during oocyte maturation. This study aimed to examine the influence of different NAD+ biosynthetic pathways on oocyte quality by inhibiting key enzymes. Porcine oocytes from small antral follicles were matured for 44 h in a defined maturation system supplemented with 2-hydroxynicotinic acid [2-HNA, nicotinic acid phosphoribosyltransferase (NAPRT) inhibitor], FK866 [nicotinamide phosphoribosyltransferase (NAMPT) inhibitor], or gallotannin [nicotinamide mononucleotide adenylyltransferase (NMNAT) inhibitor] and their respective NAD+ pathway modulators (nicotinic acid, nicotinamide, and nicotinamide mononucleotide, respectively). Cumulus expansion was assessed after 22 h of maturation. At 44 h, maturation rates were determined and mature oocytes were fixed and stained to assess spindle formation. Each enzyme inhibitor reduced oocyte maturation rate and adversely affected spindle formation, indicating that NAD+ is required for meiotic spindle assembly. Furthermore, NAMPT and NMNAT inhibition reduced cumulus expansion, whereas NAPRT inhibition affected chromosomal segregation. Treating oocytes with gallotannin and nicotinamide mononucleotide together showed improvements in spindle width, while treating oocytes with 2-HNA and nicotinic acid combined showed an improvement in both spindle length and width. These results indicate that the salvage pathway plays a vital role in promoting oocyte meiotic progression, while the Preiss-Handler pathway is essential for spindle assembly. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Electric Literature of C11H15N2O8P).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.Electric Literature of C11H15N2O8P

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Pollard, Charley-Lea et al. published their research in The Journal of reproduction and development in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Application of 1094-61-7

Insights into the NAD+ biosynthesis pathways involved during meiotic maturation and spindle formation in porcine oocytes. was written by Pollard, Charley-Lea;Younan, Ashleigh;Swegen, Aleona;Gibb, Zamira;Grupen, Christopher G. And the article was included in The Journal of reproduction and development in 2022.Application of 1094-61-7 The following contents are mentioned in the article:

Treatments that elevate NAD+ levels have been found to improve oocyte quality in mice, cattle, and pigs, suggesting that NAD+ is vital during oocyte maturation. This study aimed to examine the influence of different NAD+ biosynthetic pathways on oocyte quality by inhibiting key enzymes. Porcine oocytes from small antral follicles were matured for 44 h in a defined maturation system supplemented with 2-hydroxynicotinic acid [2-HNA, nicotinic acid phosphoribosyltransferase (NAPRT) inhibitor], FK866 [nicotinamide phosphoribosyltransferase (NAMPT) inhibitor], or gallotannin [nicotinamide mononucleotide adenylyltransferase (NMNAT) inhibitor] and their respective NAD+ pathway modulators (nicotinic acid, nicotinamide, and nicotinamide mononucleotide, respectively). Cumulus expansion was assessed after 22 h of maturation. At 44 h, maturation rates were determined and mature oocytes were fixed and stained to assess spindle formation. Each enzyme inhibitor reduced oocyte maturation rate and adversely affected spindle formation, indicating that NAD+ is required for meiotic spindle assembly. Furthermore, NAMPT and NMNAT inhibition reduced cumulus expansion, whereas NAPRT inhibition affected chromosomal segregation. Treating oocytes with gallotannin and nicotinamide mononucleotide together showed improvements in spindle width, while treating oocytes with 2-HNA and nicotinic acid combined showed an improvement in both spindle length and width. These results indicate that the salvage pathway plays a vital role in promoting oocyte meiotic progression, while the Preiss-Handler pathway is essential for spindle assembly. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Application of 1094-61-7).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Application of 1094-61-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Huang, Wei et al. published their research in Chemical Research in Toxicology in 2021 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Category: amides-buliding-blocks

Integrated Proteomics and Metabolomics Assessment Indicated Metabolic Alterations in Hypothalamus of Mice Exposed to Triclosan was written by Huang, Wei;Zhu, Lin;Cao, Guodong;Xie, Peisi;Song, Yuanyuan;Huang, Jialing;Chen, Xiangfeng;Cai, Zongwei. And the article was included in Chemical Research in Toxicology in 2021.Category: amides-buliding-blocks The following contents are mentioned in the article:

Triclosan (TCS) is a ubiquitous antimicrobial used in many daily consumer products. It has been reported to induce endocrine disrupting effects at low doses in mammals, disturbing sex hormone function and thyroid function. The hypothalamus plays a crucial role in the maintenance of neuroendocrine function and energy homeostasis. We speculated that the adverse effects of TCS might be related to the disturbance of metabolic processes in hypothalamus. The present study aimed at investigating the effects of TCS exposure on the protein and metabolite profiles in hypothalamus of mice. Male C57BL/6 mice were orally exposed to TCS at the dosage of 10 mg/kg/d for 13 wk. The hypothalamus was isolated and processed for mass spectrometry (MS)-based proteomics and metabolomics analyses. The results showed that a 10.6% decrease (P = 0.066) in body weight gain was observed in the TCS exposure group compared with vehicle control group. Differential anal. defined 52 proteins and 57 metabolites that delineated TCS exposed mice from vehicle controls. Among the differential features, multiple proteins and metabolites were found to play vital roles in neuronal signaling and function. Bioinformatics anal. revealed that these differentially expressed proteins and metabolites were involved in four major biol. processes, including glucose metabolism, purine metabolism, neurotransmitter release, and neural plasticity, suggesting the disturbance of homeostasis in energy metabolism, mitochondria function, neurotransmitter system, and neuronal function. Our results may provide insights into the neurotoxicity of TCS and extend our understanding of the biol. effects induced by TCS exposure. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Category: amides-buliding-blocks).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Category: amides-buliding-blocks

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics