Visible-Light-Promoted Carboimination of Unactivated Alkenes for the Synthesis of Densely Functionalized Pyrroline Derivatives was written by Cai, Sai-Hu;Xie, Jia-Hao;Song, Shengjin;Ye, Lu;Feng, Chao;Loh, Teck-Peng. And the article was included in ACS Catalysis in 2016.Quality Control of 4-Bromo-N-methoxy-N-methylbenzamide This article mentions the following:
An efficient strategy which integrates visible-light-induced iminyl-radical formation with carboimination of unactivated alkenes has been developed for the easy access of densely functionalized pyrroline derivatives With fac-[Ir(ppy)3] as photoredox catalyst, the acyl oximes were converted into iminyl radical intermediates by one electron reduction, and evolve through a cascade of intramol. cyclization and intermol. carbon radical trapping to give the functionalized pyrrolines. The utilization of silyl enol ethers as coupling partners not only allows the introduction of synthetically useful ketone functionalities but also renders catalyst regeneration without any external reductants. This protocol is characterized by its mild reaction conditions and the tolerance of a broad range of functionalities. In the experiment, the researchers used many compounds, for example, 4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2Quality Control of 4-Bromo-N-methoxy-N-methylbenzamide).
4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Quality Control of 4-Bromo-N-methoxy-N-methylbenzamide
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics