Indirect reduction of CO2 and recycling of polymers by manganese-catalyzed transfer hydrogenation of amides, carbamates, urea derivatives and polyurethanes was written by Liu, Xin;Werner, Thomas. And the article was included in Chemical Science in 2021.COA of Formula: C13H24N2O This article mentions the following:
A manganese pincer complex as a versatile catalyst for the transfer hydrogenation of amides, carbamates, urea derivatives and even polyurethanes leading to the corresponding alcs., amines and methanol as products were reported. Since these compound classes can be prepared using CO2 as a C1 building block the reported reaction represents an approach to the indirect reduction of CO2. Notably, these are the first examples on the reduction of carbamates and urea derivatives as well as on the C-N bond cleavage in amides by transfer hydrogenation. The general applicability of this methodol. is highlighted by the successful reduction of 12 urea derivatives, 26 carbamates and 11 amides. The corresponding amines, alcs. and methanol were obtained in good to excellent yields up to 97%. Furthermore, polyurethanes were successfully converted which represents a viable strategy towards a circular economy. Based on control experiments and the observed intermediates a feasible mechanism was proposed. In the experiment, the researchers used many compounds, for example, 1,3-Dicyclohexylurea (cas: 2387-23-7COA of Formula: C13H24N2O).
1,3-Dicyclohexylurea (cas: 2387-23-7) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.COA of Formula: C13H24N2O
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics