Li, Qing et al. published their research in Ultrasonics Sonochemistry in 2020 | CAS: 10543-57-4

N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Name: N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide)

Establishing an ultrasound-assisted activated peroxide system for efficient and sustainable scouring-bleaching of cotton/spandex fabric was written by Li, Qing;Ni, Lijie;Wang, Jiacheng;Quan, Heng;Zhou, Yuyang. And the article was included in Ultrasonics Sonochemistry in 2020.Name: N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) This article mentions the following:

This study presents a high-efficient and cost-effective ultrasound-assisted strategy for one-bath one-step scouring and bleaching of cotton/spandex fabric using sodium percarbonate (SPC) and tetraacetylenediamine (TAED) couple. SPC plays both roles of pH regulator and H2O2 donor to initiate the peracetic acid (PAA) release from TAED. The significance and interaction effects of operating parameters (TAED concentration, temperature and time) on the WI (Whiteness Index) of fabrics were investigated through a central composite design. The bleaching mechanism was studied by exploring the relationship between WI and PAA and hydroxyl radical (HO·) concentrations The mech. and dyeing performances of treated fabrics were also evaluated. Results show that temperature exerted a significant impact on WI followed by TAED concentration and time. The PAA concentration decreased and HO· concentration increased upon the temperature rise. Both PAA and HO· were significant to upgrade WI and ultrasound was effective in enhancing their bleaching efficiency. The fabric treated only with 15 mmol/L TAED and 10 mmol/L SPC at 40° for 40 min under ultrasound could achieve a WI of 68.6 (43% higher than greige fabric), which was almost equivalent to that of the fabric treated at 60° without ultrasound. This verifies the contribution of ultrasound technol. in reducing bleaching temperature for energy-saving purpose. Moreover, the treated fabric displayed less than 5% tensile strength loss, having a marginal impact on the apparel performance. The wettability of fabric was greatly improved leading to a good dyeing performance. Encouraging results demonstrate the high efficiency of the ultrasound-assisted pre-treatment process of cotton/spandex fabric, which contributes to the sustainable production of textiles. In the experiment, the researchers used many compounds, for example, N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4Name: N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide)).

N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Name: N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide)

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics