Goldfogel, Matthew J. et al. published their research in Organic Process Research & Development in 2022 | CAS: 10238-21-8

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Related Products of 10238-21-8

Advancing Base-Metal Catalysis: Development of a Screening Method for Nickel-Catalyzed Suzuki-Miyaura Reactions of Pharmaceutically Relevant Heterocycles was written by Goldfogel, Matthew J.;Guo, Xuelei;Melendez Matos, Jeishla L.;Gurak, John A. Jr.;Joannou, Matthew V.;Moffat, William B.;Simmons, Eric M.;Wisniewski, Steven R.. And the article was included in Organic Process Research & Development in 2022.Related Products of 10238-21-8 This article mentions the following:

Interest in replacing palladium catalysts with base metals resulted in the development of a 24-reaction screening platform for identifying nickel-catalyzed Suzuki-Miyaura reaction conditions. This method was designed to be directly applicable to process scale-up by employing homogeneous reaction conditions alongside stable and inexpensive nickel(II) precatalysts and has proven to be broadly suitable for complex heterocyclic substrates relevant to bioactive mols. These advances were enabled by the key discovery that a methanol additive greatly improves the reaction performance and enables the use of organic-soluble amine bases. The screening platform and scale-up workflow were applied to a representative cross-coupling using the antipsychotic perphenazine and enabled the rapid development of a gram-scale synthesis that highlighted the utility of this method and the advantages of nickel catalysis for metal remediation. In the experiment, the researchers used many compounds, for example, 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8Related Products of 10238-21-8).

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Related Products of 10238-21-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Hodson, Stephen J. et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2002 | CAS: 19311-91-2

N,N-Diethylsalicylamide (cas: 19311-91-2) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Recommanded Product: N,N-Diethylsalicylamide

α1-Adrenoceptor activation: a comparison of 4-(anilinomethyl)imidazoles and 4-(phenoxymethyl)imidazoles to related 2-imidazolines was written by Hodson, Stephen J.;Bigham, Eric C.;Garrison, Deanna T.;Gobel, Michael J.;Irving, Paul E.;Liacos, James A.;Navas, Frank;Saussy, David L.;Sherman, Bryan W.;Speake, Jason D.;Bishop, Michael J.. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2002.Recommanded Product: N,N-Diethylsalicylamide This article mentions the following:

Literature reports suggest that disruption of an interhelical salt bridge is critical for α1-adrenoceptor activation, and the basic amine found in adrenergic receptor ligands is responsible for the disruption. Novel 4-(anilinomethyl)imidazoles and 4-(phenoxymethyl)imidazoles are agonists of the cloned human α1-adrenoceptors in vitro, and potent, selective α1A-adrenoceptor agonists have been identified in this series. These imidazoles demonstrate similar potencies and α1-subtype selectivities as the corresponding 2-substituted imidazolines. The extremely close SAR suggests that, in spite of the large difference in basicity, these imidazoles and imidazolines may establish the same interactions to activate α1-adrenoceptors. In the experiment, the researchers used many compounds, for example, N,N-Diethylsalicylamide (cas: 19311-91-2Recommanded Product: N,N-Diethylsalicylamide).

N,N-Diethylsalicylamide (cas: 19311-91-2) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Recommanded Product: N,N-Diethylsalicylamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Zhao, Shou-Yun et al. published their research in Yichuan in 1981 | CAS: 7413-34-5

Sodium (S)-2-(4-(((2,4-diaminopteridin-6-yl)methyl)(methyl)amino)benzamido)pentanedioate (cas: 7413-34-5) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Related Products of 7413-34-5

Study on mutagenicity of daunomycin and methotrexate sodium by Ames test and SCE method was written by Zhao, Shou-Yun;Chiu, Hsin-Fang;Li, Chang-Pen;Chin, Shih-Chen;Fu, Shao-Min. And the article was included in Yichuan in 1981.Related Products of 7413-34-5 This article mentions the following:

Daunomycin (I) [20830-81-3] induced mutagenesis in histidine-deficient strains of Salmonella typhimurium, TA100 and especially TA 98 at concentrations of ≥2 μg/test; in contrast, Na methotrexate (II Na salt) [7413-34-5] did not induce mutagenesis in both strains. Similar observations were made when I and II were tested on human leukocytes by sister chromatid exchanges (SCE); I (10 μg/mL) stimulated SCE frequency, whereas II did not cause significant change in the frequency of SCE. The sensitivity of the SCE method was 1500-fold more sensitive than the other method in testing the mutagenicity of these drugs. In the experiment, the researchers used many compounds, for example, Sodium (S)-2-(4-(((2,4-diaminopteridin-6-yl)methyl)(methyl)amino)benzamido)pentanedioate (cas: 7413-34-5Related Products of 7413-34-5).

Sodium (S)-2-(4-(((2,4-diaminopteridin-6-yl)methyl)(methyl)amino)benzamido)pentanedioate (cas: 7413-34-5) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Related Products of 7413-34-5

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Bouteiller, Cedric et al. published their research in Organic & Biomolecular Chemistry in 2010 | CAS: 19311-91-2

N,N-Diethylsalicylamide (cas: 19311-91-2) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Product Details of 19311-91-2

Copper-catalyzed amination of (bromophenyl)ethanolamine for a concise synthesis of aniline-containing analogues of NMDA NR2B antagonist ifenprodil was written by Bouteiller, Cedric;Becerril-Ortega, Javier;Marchand, Patrice;Nicole, Olivier;Barre, Louisa;Buisson, Alain;Perrio, Cecile. And the article was included in Organic & Biomolecular Chemistry in 2010.Product Details of 19311-91-2 This article mentions the following:

An operationally simple and concise synthesis of anilinoethanolamines, as NMDA NR2B receptor antagonist ifenprodil analogs, was developed via a copper-catalyzed amination of the corresponding bromoarene. Coupling was achieved with linear primary alkylamines, α,ω-diamines, hexanolamine and benzophenone imine, as well as with aqueous ammonia, in good yields using CuI and N,N-diethylsalicylamide, 2,4-pentadione or 2-acetylcyclohexanone as catalytic systems. Amination with ethylene diamine was efficient even in the absence of an additive ligand, whereas no reaction occurred with ethanolamine whatever the conditions used. The anilinoethanolamines were evaluated as NR2B receptor antagonists in a functional inhibition assay. Aminoethylanilines displayed inhibition effects close to that of ifenprodil. In the experiment, the researchers used many compounds, for example, N,N-Diethylsalicylamide (cas: 19311-91-2Product Details of 19311-91-2).

N,N-Diethylsalicylamide (cas: 19311-91-2) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Product Details of 19311-91-2

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Khramtsova, Ekaterina E. et al. published their research in Molecules in 2021 | CAS: 2387-23-7

1,3-Dicyclohexylurea (cas: 2387-23-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.HPLC of Formula: 2387-23-7

Amination of 5-Spiro-Substituted 3-Hydroxy-1,5-dihydro-2H-pyrrol-2-ones was written by Khramtsova, Ekaterina E.;Lystsova, Ekaterina A.;Khokhlova, Evgeniya V.;Dmitriev, Maksim V.;Maslivets, Andrey N.. And the article was included in Molecules in 2021.HPLC of Formula: 2387-23-7 This article mentions the following:

The 3-hydroxy-1,5-dihydro-2H-pyrrol-2-one motif is a valuable scaffold in drug discovery. The replacement of the 3-oxy fragment in 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones-based compounds with a 3-amino one (3-amino analogs of 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones, 3-amino-1,5-dihydro-2H-pyrrol-2-ones) can play a crucial role in their biol. effect. Thus, approaches to 3-amino-1,5-dihydro-2H-pyrrol-2-ones are of significant interest. We developed an approach to 5-spiro-substituted 3-amino-1,5-dihydro-2H-pyrrol-2-ones that could not be obtained using previously reported approaches (reactions of 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones with amines). The developed approach is based on the thermal decomposition of 1,3-disubstituted urea derivatives of 5-spiro-substituted 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones, which were prepared via their reaction with carbodiimides. In the experiment, the researchers used many compounds, for example, 1,3-Dicyclohexylurea (cas: 2387-23-7HPLC of Formula: 2387-23-7).

1,3-Dicyclohexylurea (cas: 2387-23-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.HPLC of Formula: 2387-23-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Duan, Hui et al. published their research in Chemistry of Materials in 2017 | CAS: 2387-23-7

1,3-Dicyclohexylurea (cas: 2387-23-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Electric Literature of C13H24N2O

Tuning Synergistic Effect of Au-Pd Bimetallic Nanocatalyst for Aerobic Oxidative Carbonylation of Amines was written by Duan, Hui;Zeng, Yongfei;Yao, Xin;Xing, Pengyao;Liu, Jia;Zhao, Yanli. And the article was included in Chemistry of Materials in 2017.Electric Literature of C13H24N2O This article mentions the following:

The activation and utilization of carbon monoxide is of crucial importance to C1 chem. Various catalytic transformation processes have been developed and studied in the last century, and oxidative carbonylation of amines is one of them. Catalysts that have been identified to date for the oxidative carbonylation of amines generally show relatively low activity and/or selectivity. Herein, a metal-organic framework (MOF), i.e., MOF-253 prepared from AlCl3·6H2O and 2,2′-bipyridine-5,5′-dicarboxylic acid, was employed as a support of gold-palladium bimetallic nanoparticles (Au-Pd/MOF) for the oxidative carbonylation of amines under mild conditions. Compared to palladium or gold monometallic catalysts, higher catalytic activity (turnover frequency up to 2573 h-1) and selectivity in the carbonylation of amines were achieved by Au-Pd/MOF bimetallic catalysts through adjusting the molar ratio of gold and palladium within the framework. A breathing effect of Au-Pd/MOF in the catalytic process was further observed from kinetic profiles and powder X-ray diffraction for the first time. In the experiment, the researchers used many compounds, for example, 1,3-Dicyclohexylurea (cas: 2387-23-7Electric Literature of C13H24N2O).

1,3-Dicyclohexylurea (cas: 2387-23-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Electric Literature of C13H24N2O

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Radice, Casey et al. published their research in Drug Metabolism & Disposition in 2022 | CAS: 10238-21-8

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Application of 10238-21-8

Predicting impact of food and feeding time on oral absorption of drugs with a novel rat continuous intestinal absorption model was written by Radice, Casey;Korzekwa, Ken;Nagar, Swati. And the article was included in Drug Metabolism & Disposition in 2022.Application of 10238-21-8 This article mentions the following:

Intricacies in intestinal physiol., drug properties, and food effects should be incorporated into models to predict complex oral drug absorption. A previously published human continuous intestinal absorption model based on the convection-diffusion equation was modified specifically for the male Sprague-Dawley rat in this report. Species-specific physiol. conditions along intestinal length – exptl. velocity and pH under fasted and fed conditions, were measured and incorporated into the intestinal absorption model. Concentration-time (C-t) profiles were measured upon a single i.v. and peroral (PO) dose for three drugs: amlodipine (AML), digoxin (DIG), and glyburide (GLY). Absorption profiles were predicted and compared with exptl. collected data under three feeding conditions: 12-h fasted rats were provided food at two specific times after oral drug dose (1 h and 2 h for AML and GLY; 0.5 h and 1 h for DIG), or they were provided food for the entire study. I.v. vs. PO C-t profiles suggested absorption even at later times and informed design of appropriate math. input functions based on exptl. feeding times. With this model, AML, DIG, and GLY oral C-t profiles for all feeding groups were generally well predicted, with exposure overlap coefficients in the range of 0.80-0.97. Efflux transport for DIG and uptake and efflux transport for GLY were included, modeling uptake transporter inhibition in the presence of food. Results indicate that the continuous intestinal rat model incorporates complex physiol. processes and feeding times relative to drug dose into a simple framework to provide accurate prediction of oral absorption. In the experiment, the researchers used many compounds, for example, 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8Application of 10238-21-8).

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Application of 10238-21-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Liu, Kai et al. published their research in Cellulose (Dordrecht, Netherlands) in 2019 | CAS: 10543-57-4

N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.HPLC of Formula: 10543-57-4

Mechanism of H2O2/bleach activators and related factors was written by Liu, Kai;Yan, Kelu;Sun, Gang. And the article was included in Cellulose (Dordrecht, Netherlands) in 2019.HPLC of Formula: 10543-57-4 This article mentions the following:

Abstract: A mechanism of H2O2/bleach activator bleaching systems was proposed by using H2O2/tetraacetylethylenediamine (TAED) system as a model. HO· concentrations of the system under different pH conditions was measured by using benzenepentacarboxylic acid as a fluorescent probe. Computational anal. of bond enthalpies of H2O2 and peracids revealed that HO· should be the most effective agent in bleaching process, and peracids formed in H2O2/bleach activator bleaching systems could more easily produce HO·. The formation of peracids in H2O2/TAED system depends on the pH values of bleaching solutions and a nucleophilic substitution of the acid derivative by peroxide anion (HOO). Charge d. on carbonyl carbons of bleach activators affects the formation of peracids as well, which was proven from these compounds of TAED, tetraacetylhydrazine, N-[4-(triethylammoniomethyl)-benzoyl]-caprolactam chloride, phthalimide, N-acetylphthalimide and nonanoyloxybenzene sulfonate. It is likely that the charge densities on carbonyl carbon of amide bleach activators should be larger than 0.185. For ester bleach activators, the results were also investigated by activation energy, Gibbs free energy and Hansen solubility parameters. In addition, the ecotoxicity of bleach activators has been evaluated by ECOSAR program. Potential bleach activators can be designed and explored according to these results instead of large amounts of exptl. data. In the experiment, the researchers used many compounds, for example, N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4HPLC of Formula: 10543-57-4).

N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.HPLC of Formula: 10543-57-4

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Yang, Shuang et al. published their research in Journal of the Chinese Chemical Society (Weinheim, Germany) in 2021 | CAS: 19311-91-2

N,N-Diethylsalicylamide (cas: 19311-91-2) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.SDS of cas: 19311-91-2

Copper porphyrin-catalyzed C(sp2)-O bond construction via coupling phenols with formamides was written by Yang, Shuang;Chen, Xiao-Yan;Xiong, Ming-Feng;Zhang, Hao;Shi, Lei;Lin, Dong-Zi;Liu, Hai-Yang. And the article was included in Journal of the Chinese Chemical Society (Weinheim, Germany) in 2021.SDS of cas: 19311-91-2 This article mentions the following:

Copper porphyrin-catalyzed construction of C(sp2)-O bond via coupling formamides with phenols was achieved firstly. A broad range of substrates afforded various carbamates R1R2NC(O)OR [R1 = 4-FC6H4, 3-CHOC6H4, 2-F3CC6H4, etc.; R1 = Me, Et; R2 = Me, Et; R1R2 = CH2CH2OCH2CH2] in moderate to good yields with good functional group tolerance at low catalyst loading. Intermol. competing kinetic isotope effect experiment indicated that the generation of formamide radical was the rate-determining step of current cross-dehydrogenative coupling (CDC) reaction. The research extended the application of metalloporphyrin in CDC reaction. In the experiment, the researchers used many compounds, for example, N,N-Diethylsalicylamide (cas: 19311-91-2SDS of cas: 19311-91-2).

N,N-Diethylsalicylamide (cas: 19311-91-2) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.SDS of cas: 19311-91-2

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

See, Gerard Lee et al. published their research in Journal of Controlled Release in 2020 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Application of 53902-12-8

Enhanced nose-to-brain delivery of tranilast using liquid crystal formulations was written by See, Gerard Lee;Arce, Florencio Jr.;Dahlizar, Sabrina;Okada, Akie;Bin Mohd. Fadli, Muhammad Fikri;Hijikuro, Ichiro;Itakura, Shoko;Katakura, Masanori;Todo, Hiroaki;Sugibayashi, Kenji. And the article was included in Journal of Controlled Release in 2020.Application of 53902-12-8 This article mentions the following:

Intranasal administration is poised as a competent method in delivering drugs to the brain, because the nasal route has a direct link with the central nervous system bypassing the formidable blood-brain barrier. C17-monoglycerol ester (MGE) and glyceryl monooleate (GMO) as liquid crystal (LC)-forming lipids possess desirable formulation characteristics as drug carriers for intranasally administered drugs. This study investigated the effect of LC formulations on the pharmacokinetics of tranilast (TL), a lipophilic model drug, and its distribution in the therapeutic target regions of the brain in rats. The anatomical biodistribution of LC formulations was monitored using micro-computed tomog. tandem in vivo imaging systems. MGE and GMO effectively formed LC with suitable particle size, zeta potential, and viscosity supporting the delivery of TL to the brain. MGE and GMO LC formulations enhanced brain uptake by 10- to 12-fold and 2- to 2.4- fold, resp., compared with TL solution The olfactory bulb had the highest TL concentration and fluorescent signals among all the brain regions, indicating a direct nose-to-brain delivery pathway of LC formulations. LC-forming lipids, MGE and GMO, are potential biomaterials in formulations intended for intranasal administration. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Application of 53902-12-8).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Application of 53902-12-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics