Design of an in vitro multienzyme cascade system for the biosynthesis of nicotinamide mononucleotide was written by Zhou, Cailian;Feng, Jiao;Wang, Jing;Hao, Ning;Wang, Xin;Chen, Kequan. And the article was included in Catalysis Science & Technology in 2022.Recommanded Product: 1094-61-7 The following contents are mentioned in the article:
For the biosynthesis of NMN (NMN), three artificial pathways including the nicotinamide ribose phosphorylation pathway, adenosine phosphate pyrophosphorylation pathway, and adenosine phosphate hydrolysis (APH) pathway were designed and successfully conducted to produce NMN in vitro. The APH pathway, using AMP nucleosidase, ribose-phosphate diphosphokinase, and nicotinamide phosphoribosyltransferase (NAMPT), exhibited the highest level of NMN synthesis. To further improve NMN production via the APH pathway, various NAMPT orthologues were screened. The effects of temperature, pH, metal ions and enzyme ratios were further systematically investigated, and the accumulation of ADP was identified limiting pathway efficiency. Subsequently, an ATP recycling process was achieved by adding polyphosphate kinase 2 to convert ADP to ATP. With the optimized four multienzyme cascade catalysis systems, the NMN titer was increased to 9 mmol L-1 (3.0 g L-1) from 600μmol L-1 (0.2 g L-1) in vitro. This is the first study to use a multienzyme cascade catalysis process for NMN biosynthesis. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Recommanded Product: 1094-61-7).
((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Recommanded Product: 1094-61-7
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics