Campbell, Jared M et al. published their research in Nutrients in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Recommanded Product: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Supplementation with NAD+ and Its Precursors to Prevent Cognitive Decline across Disease Contexts. was written by Campbell, Jared M. And the article was included in Nutrients in 2022.Recommanded Product: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate The following contents are mentioned in the article:

The preservation of cognitive ability by increasing nicotinamide adenine dinucleotide (NAD+) levels through supplementation with NAD+ precursors has been identified as a promising treatment strategy for a number of conditions; principally, age-related cognitive decline (including Alzheimer’s disease and vascular dementia), but also diabetes, stroke, and traumatic brain injury. Candidate factors have included NAD+ itself, its reduced form NADH, nicotinamide (NAM), nicotinamide mononucleotide (NMN), nicotinamide riboside (NR), and niacin (or nicotinic acid). This review summarises the research findings for each source of cognitive impairment for which NAD+ precursor supplementation has been investigated as a therapy. The findings are mostly positive but have been made primarily in animal models, with some reports of null or adverse effects. Given the increasing popularity and availability of these factors as nutritional supplements, further properly controlled clinical research is needed to provide definitive answers regarding this strategy’s likely impact on human cognitive health when used to address different sources of impairment. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Recommanded Product: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Recommanded Product: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Debonsi, Hosana M. et al. published their research in Pest Management Science in 2009 | CAS: 18836-52-7

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Related Products of 18836-52-7

Isobutyl amides – potent compounds for controlling Diatraea saccharalis was written by Debonsi, Hosana M.;Miranda, Jose E.;Murata, Afonso T.;de Bortoli, Sergio A.;Kato, Massuo J.;Bolzani, Vanderlan S.;Furlan, Maysa. And the article was included in Pest Management Science in 2009.Related Products of 18836-52-7 The following contents are mentioned in the article:

Background: A dichloromethane-methanol extract of the seeds of Piper tuberculatum Jacq. (Piperaceae) and two iso-Bu amides, 4,5-dihydropiperlonguminine (1) and pellitorine (2), which were isolated by chromatog. methods, were assayed for their lethality against the sugarcane borer Diatraea saccharalis F. (Lepidoptera: Pyralidae). Results: Bioassays were carried out with fourth-instar caterpillars through topical application of test solutions to the dorsal surface of the prothorax, and dose-response correlations were determined Significant insect mortalities were observed 24, 48 and 72 h after treatment at concentrations of ≥100 μg insect-1. The LD50 and LD90 values for compound 1 were 92.83 and 176.50 μg insect-1, and for compound 2 they were 91.19 and 184.56 μg insect-1. Conclusion: According to the LD50 and LD90 for compounds 1 and 2, it can be inferred that the values reflect an acute lethal response to both compounds, based on interaction(s) of the toxicants with a primary target or series of targets. Thus, the amides were demonstrated to have potential value in the control of the sugarcane borer. This study involved multiple reactions and reactants, such as (2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7Related Products of 18836-52-7).

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Related Products of 18836-52-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Ding, Jing et al. published their research in Microbiology and Immunology in 2021 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Safety of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Nicotinamide phosphoribosyltransferase inhibitor is a novel therapeutic candidate in LPS-induced neutrophil extracellular traps was written by Ding, Jing;Zhang, Zuoman;Huang, Weimin;Bi, Guangliang. And the article was included in Microbiology and Immunology in 2021.Safety of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate The following contents are mentioned in the article:

Neutrophil extracellular traps (NETs) are beneficial antibacterial defense structures. However, excessive NETs have also been linked to tissue damage and organ dysfunction. LPS and Gram-neg. bacteria induce the formation of reactive oxygen species (ROS)-dependent NETs via the JNK pathway. It was found previously that knockdown of nicotinamide phosphoribosyltransferase (NAMPT) upregulates surfactant protein B (SFTPB or SP-B) and attenuates LPS-induced acute lung injury (ALI) via inhibiting JNK activation. This study investigated the effect of FK866, an intracellular NAMPT inhibitor, on the formation of LPS-induced NETs in mouse bronchoalveolar lavage (BAL) neutrophils and in differentiated HL-60 cells. The results show that inhibition of NAMPT by FK866 suppresses NETs formation in BAL neutrophils from the mice exposed to LPS. FK866 also suppresses NETs formation in the differentiated HL-60 cells stimulated with LPS. Addnl. data indicate that these effects are mediated by suppressing ROS production at least partly via inhibiting JNK activation and depleting NAD(P)H. The utility of inhibition of intracellular NAMPT may be a potential therapy for LPS-induced NETs-related diseases. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Safety of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Safety of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Yasuda, Itaru et al. published their research in Journal of the American Society of Nephrology in 2021 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Electric Literature of C11H15N2O8P

Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy was written by Yasuda, Itaru;Hasegawa, Kazuhiro;Sakamaki, Yusuke;Muraoka, Hirokazu;Kawaguchi, Takahisa;Kusahana, Ei;Ono, Takashi;Kanda, Takeshi;Tokuyama, Hirobumi;Wakino, Shu;Itoh, Hiroshi. And the article was included in Journal of the American Society of Nephrology in 2021.Electric Literature of C11H15N2O8P The following contents are mentioned in the article:

The activation of NAD+-dependent deacetylase, Sirt1, by the administration of NMN (NMN) ameliorates various aging-related diseases. Diabetic db/db mice were treated with NMN transiently for 2 wk and observed for effects on diabetic nephropathy (DN). At 14 wk after the treatment period, NMN attenuated the increases in urinary albumin excretion in db/db mice without ameliorating Hb A1c levels. Short-term NMN treatment mitigated mesangium expansion and foot process effacement, while ameliorating decreased Sirt1 expression and increased claudin-1 expression in the kidneys of db/db mice. This treatment also improved the decrease in the expression of H3K9me2 and DNMT1. Short-term NMN treatment also increased kidney concentrations of NAD+ and the expression of Sirt1 and nicotinamide phosphoribosyltransferase (Nampt), and it maintained NMN adenyltransferase1 (Nmnat1) expression in the kidneys. In addition, survival rates improved after NMN treatment. Short-term NMN treatment in early-stage DN has remote renal protective effects through the upregulation of Sirt1 and activation of the NAD+ salvage pathway, both of which indicate NMN legacy effects on DN. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Electric Literature of C11H15N2O8P).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Electric Literature of C11H15N2O8P

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Li, Kuiyong et al. published their research in Analyst (Cambridge, United Kingdom) in 2014 | CAS: 18836-52-7

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Formula: C14H25NO

Alkaloids analysis using off-line two-dimensional supercritical fluid chromatography × ultra-high performance liquid chromatography was written by Li, Kuiyong;Fu, Qing;Xin, Huaxia;Ke, Yanxiong;Jin, Yu;Liang, Xinmiao. And the article was included in Analyst (Cambridge, United Kingdom) in 2014.Formula: C14H25NO The following contents are mentioned in the article:

An off-line two-dimensional (2-D) supercritical fluid chromatog. (SFC) × ultra-HPLC (UHPLC) method with high orthogonality was developed for the anal. of the practical amide alkaloids fraction from P. longum L. The effects of SFC parameters such as column type, organic modifier, temperature and back-pressure on separation were systematically evaluated. Different selectivity was observed for different columns (BEH, BEH 2-EP, XAmide and CSH FP). A study was then carried out of the orthogonality of different columns and systems following a geometric approach with a set of amide alkaloid samples. The orthogonality between a CSH FP column and a BEH column reached 50.79%, which was much higher than that for the other columns. While the orthogonality between SFC and UHPLC based on an XAmide column and an HSS T3 column reached 69.84%, which was the highest of all the combinations. At last, the practical amide alkaloids fraction was analyzed with an off-line 2-D chromatog. SFC × UHPLC system. In total, at least 340 peaks were detected by this method. Rapid separation in these two dimensions and easy post treatment of SFC facilitated this 2-D system for the separation of complex samples. This study involved multiple reactions and reactants, such as (2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7Formula: C14H25NO).

(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Formula: C14H25NO

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Patel, Jaymin R. et al. published their research in Cell (Cambridge, MA, United States) in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.COA of Formula: C11H15N2O8P

Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiome was written by Patel, Jaymin R.;Oh, Joonseok;Wang, Shenqi;Crawford, Jason M.;Isaacs, Farren J.. And the article was included in Cell (Cambridge, MA, United States) in 2022.COA of Formula: C11H15N2O8P The following contents are mentioned in the article:

Small mols. encoded by biosynthetic pathways mediate cross-species interactions and harbor untapped potential, which has provided valuable compounds for medicine and biotechnol. Since studying biosynthetic gene clusters in their native context is often difficult, alternative efforts rely on heterologous expression, which is limited by host-specific metabolic capacity and regulation. Here, we describe a computational-exptl. technol. to redesign genes and their regulatory regions with hybrid elements for cross-species expression in Gram-neg. and -pos. bacteria and eukaryotes, decoupling biosynthetic capacity from host-range constraints to activate silenced pathways. These synthetic genetic elements enabled the discovery of a class of microbiome-derived nucleotide metabolites-tyrocitabines-from Lactobacillus iners. Tyrocitabines feature a remarkable orthoester-phosphate, inhibit translational activity, and invoke unexpected biosynthetic machinery, including a class of “Amadori synthases” and “abortive” tRNA synthetases. Our approach establishes a general strategy for the redesign, expression, mobilization, and characterization of genetic elements in diverse organisms and communities. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7COA of Formula: C11H15N2O8P).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.COA of Formula: C11H15N2O8P

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Patel, Jaymin R. et al. published their research in Cell (Cambridge, MA, United States) in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Product Details of 1094-61-7

Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiome was written by Patel, Jaymin R.;Oh, Joonseok;Wang, Shenqi;Crawford, Jason M.;Isaacs, Farren J.. And the article was included in Cell (Cambridge, MA, United States) in 2022.Product Details of 1094-61-7 The following contents are mentioned in the article:

Small mols. encoded by biosynthetic pathways mediate cross-species interactions and harbor untapped potential, which has provided valuable compounds for medicine and biotechnol. Since studying biosynthetic gene clusters in their native context is often difficult, alternative efforts rely on heterologous expression, which is limited by host-specific metabolic capacity and regulation. Here, we describe a computational-exptl. technol. to redesign genes and their regulatory regions with hybrid elements for cross-species expression in Gram-neg. and -pos. bacteria and eukaryotes, decoupling biosynthetic capacity from host-range constraints to activate silenced pathways. These synthetic genetic elements enabled the discovery of a class of microbiome-derived nucleotide metabolites-tyrocitabines-from Lactobacillus iners. Tyrocitabines feature a remarkable orthoester-phosphate, inhibit translational activity, and invoke unexpected biosynthetic machinery, including a class of “Amadori synthases” and “abortive” tRNA synthetases. Our approach establishes a general strategy for the redesign, expression, mobilization, and characterization of genetic elements in diverse organisms and communities. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Product Details of 1094-61-7).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Product Details of 1094-61-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Singh, Sukhvinder et al. published their research in Cell Reports Medicine | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Formula: C11H15N2O8P

Integrative metabolomics and transcriptomics identifies itaconate as an adjunct therapy to treat ocular bacterial infection was written by Singh, Sukhvinder;Singh, Pawan Kumar;Jha, Alokkumar;Naik, Poonam;Joseph, Joveeta;Giri, Shailendra;Kumar, Ashok. And the article was included in Cell Reports Medicine.Formula: C11H15N2O8P The following contents are mentioned in the article:

The eye is highly susceptible to inflammation-mediated tissue damage evoked during bacterial infection. However, mechanisms regulating inflammation to protect the eye remain elusive. Here, we used integrated metabolomics and transcriptomics to show that the immunomodulatory metabolite itaconate and immune-responsive gene 1 (Irg1) are induced in bacterial (Staphylococcus aureus)-infected mouse eyes, bone-marrow-derived macrophages (BMDMs), and Muller glia. Itaconate levels are also elevated in the vitreous of patients with bacterial endophthalmitis. Irg1 deficiency in mice led to increased ocular pathol. Conversely, intraocular administration of itaconate protects both Irg1-/- and wild-type mice from bacterial endophthalmitis by reducing inflammation, bacterial burden, and preserving retinal architecture and visual function. Notably, itaconate exerts synergistic effects with antibiotics. The protective, anti-inflammatory effects of itaconate are mediated via activation of NRF2/HO-1 signaling and inhibition of NLRP3 inflammasome. Collectively, our study demonstrates the Irg1/itaconate axis is a regulator of intraocular inflammation and provides evidence for using itaconate, along with antibiotics, to treat bacterial infections. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Formula: C11H15N2O8P).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Formula: C11H15N2O8P

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Singh, Sukhvinder et al. published their research in Cell Reports Medicine | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Integrative metabolomics and transcriptomics identifies itaconate as an adjunct therapy to treat ocular bacterial infection was written by Singh, Sukhvinder;Singh, Pawan Kumar;Jha, Alokkumar;Naik, Poonam;Joseph, Joveeta;Giri, Shailendra;Kumar, Ashok. And the article was included in Cell Reports Medicine.Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate The following contents are mentioned in the article:

The eye is highly susceptible to inflammation-mediated tissue damage evoked during bacterial infection. However, mechanisms regulating inflammation to protect the eye remain elusive. Here, we used integrated metabolomics and transcriptomics to show that the immunomodulatory metabolite itaconate and immune-responsive gene 1 (Irg1) are induced in bacterial (Staphylococcus aureus)-infected mouse eyes, bone-marrow-derived macrophages (BMDMs), and Muller glia. Itaconate levels are also elevated in the vitreous of patients with bacterial endophthalmitis. Irg1 deficiency in mice led to increased ocular pathol. Conversely, intraocular administration of itaconate protects both Irg1-/- and wild-type mice from bacterial endophthalmitis by reducing inflammation, bacterial burden, and preserving retinal architecture and visual function. Notably, itaconate exerts synergistic effects with antibiotics. The protective, anti-inflammatory effects of itaconate are mediated via activation of NRF2/HO-1 signaling and inhibition of NLRP3 inflammasome. Collectively, our study demonstrates the Irg1/itaconate axis is a regulator of intraocular inflammation and provides evidence for using itaconate, along with antibiotics, to treat bacterial infections. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Bai, Long-Bo et al. published their research in Pharmacology Research & Perspectives in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Application of 1094-61-7

Improvement of tissue-specific distribution and biotransformation potential of nicotinamide mononucleotide in combination with ginsenosides or resveratrol was written by Bai, Long-Bo;Yau, Lee-Fong;Tong, Tian-Tian;Chan, Wai-Him;Zhang, Wei;Jiang, Zhi-Hong. And the article was included in Pharmacology Research & Perspectives in 2022.Application of 1094-61-7 The following contents are mentioned in the article:

Decreased NAD (NAD+) level has received increasing attention in recent years since it plays a critical role in many diseases and aging. Although some research has proved that supplementing NMN (NMN) could improve the level of NAD+, it is still uncertain whether the NAD+ level in specific tissues could be improved in combination with other nutrients. So far, a variety of nutritional supplements have flooded the market, which contains the compositions of NMN coupled with natural products. However, the synergy and transformation process of NMN has not been fully elucidated. In this study, oral administration of NMN (500 mg/kg) combined with resveratrol (50 mg/kg) or ginsenoside Rh2&Rg3 (50 mg/kg) was used to validate the efficacy of appropriate drug combinations in mice. Compared with NMN alone, NMN combined with resveratrol could increase the levels of NAD+ in the heart and muscle by about 1.6 times and 1.7 times, resp., whereas NMN coupled with ginsenoside Rh2&Rg3 could effectively improve the level of NAD+ in lung tissue for approx. 2.0 times. Our study may provide new treatment ideas for aging or diseases in cardiopulmonary caused by decreased NAD+ levels. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Application of 1094-61-7).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Application of 1094-61-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics