Nagahisa, Taichi et al. published their research in Endocrinology in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Reference of 1094-61-7

Intestinal Epithelial NAD+ Biosynthesis Regulates GLP-1 Production and Postprandial Glucose Metabolism in Mice. was written by Nagahisa, Taichi;Yamaguchi, Shintaro;Kosugi, Shotaro;Homma, Koichiro;Miyashita, Kazutoshi;Irie, Junichiro;Yoshino, Jun;Itoh, Hiroshi. And the article was included in Endocrinology in 2022.Reference of 1094-61-7 The following contents are mentioned in the article:

Obesity is associated with perturbations in incretin production and whole-body glucose metabolism, but the precise underlying mechanism remains unclear. Here, we tested the hypothesis that nicotinamide phosphoribosyltransferase (NAMPT), which mediates the biosynthesis of nicotinamide adenine dinucleotide (NAD+), a key regulator of cellular energy metabolism, plays a critical role in obesity-associated intestinal pathophysiology and systemic metabolic complications. To this end, we generated a novel mouse model, namely intestinal epithelial cell-specific Nampt knockout (INKO) mice. INKO mice displayed diminished glucagon-like peptide-1 (GLP-1) production, at least partly contributing to reduced early-phase insulin secretion and postprandial hyperglycemia. Mechanistically, loss of NAMPT attenuated the Wnt signaling pathway, resulting in insufficient GLP-1 production. We also found that diet-induced obese mice had compromised intestinal NAMPT-mediated NAD+ biosynthesis and Wnt signaling pathway, associated with impaired GLP-1 production and whole-body glucose metabolism, resembling the INKO mice. Finally, administration of a key NAD+ intermediate, nicotinamide mononucleotide (NMN), restored intestinal NAD+ levels and obesity-associated metabolic derangements, manifested by a decrease in ileal Proglucagon expression and GLP-1 production as well as postprandial hyperglycemia in INKO and diet-induced obese mice. Collectively, our study provides mechanistic and therapeutic insights into intestinal NAD+ biology related to obesity-associated dysregulation of GLP-1 production and postprandial hyperglycemia. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Reference of 1094-61-7).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Reference of 1094-61-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Padmanabhan, Nisha et al. published their research in Genome Biology in 2021 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.Synthetic Route of C11H15N2O8P

Highly recurrent CBS epimutations in gastric cancer CpG island methylator phenotypes and inflammation was written by Padmanabhan, Nisha;Kyon, Huang Kie;Boot, Arnoud;Lim, Kevin;Srivastava, Supriya;Chen, Shuwen;Wu, Zhiyuan;Lee, Hyung-O. K.;Mukundan, Vineeth T.;Chan, Charlene;Chan, Yarn Kit;Xuewen, Ong;Pitt, Jason J.;Isa, Zul Fazreen Adam;Xing, Manjie;Lee, Ming Hui;Tan, Angie Lay Keng;Ting, Shamaine Ho Wei;Luftig, Micah A.;Kappei, Dennis;Kruger, Warren D.;Bian, Jinsong;Ho, Ying Swan;Teh, Ming;Rozen, Steve George;Tan, Patrick. And the article was included in Genome Biology in 2021.Synthetic Route of C11H15N2O8P The following contents are mentioned in the article:

CIMP (CpG island methylator phenotype) is an epigenetic mol. subtype, observed in multiple malignancies and associated with the epigenetic silencing of tumor suppressors. Currently, for most cancers including gastric cancer (GC), mechanisms underlying CIMP remain poorly understood. We sought to discover mol. contributors to CIMP in GC, by performing global DNA methylation, gene expression, and proteomics profiling across 14 gastric cell lines, followed by similar integrative anal. in 50 GC cell lines and 467 primary GCs. We identify the cystathionine beta-synthase enzyme (CBS) as a highly recurrent target of epigenetic silencing in CIMP GC. Likewise, we show that CBS epimutations are significantly associated with CIMP in various other cancers, occurring even in premalignant gastroesophageal conditions and longitudinally linked to clin. persistence. Of note, CRISPR deletion of CBS in normal gastric epithelial cells induces widespread DNA methylation changes that overlap with primary GC CIMP patterns. Reflecting its metabolic role as a gatekeeper interlinking the methionine and homocysteine cycles, CBS loss in vitro also causes reductions in the anti-inflammatory gasotransmitter hydrogen sulfide (H2S), with concomitant increase in NF-κ B activity. In a murine genetic model of CBS deficiency, preliminary data indicate upregulated immune-mediated transcriptional signatures in the stomach. Our results implicate CBS as a bi-faceted modifier of aberrant DNA methylation and inflammation in GC and highlights H2S donors as a potential new therapy for CBS-silenced lesions. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Synthetic Route of C11H15N2O8P).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.Synthetic Route of C11H15N2O8P

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Padmanabhan, Nisha et al. published their research in Genome Biology in 2021 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Highly recurrent CBS epimutations in gastric cancer CpG island methylator phenotypes and inflammation was written by Padmanabhan, Nisha;Kyon, Huang Kie;Boot, Arnoud;Lim, Kevin;Srivastava, Supriya;Chen, Shuwen;Wu, Zhiyuan;Lee, Hyung-O. K.;Mukundan, Vineeth T.;Chan, Charlene;Chan, Yarn Kit;Xuewen, Ong;Pitt, Jason J.;Isa, Zul Fazreen Adam;Xing, Manjie;Lee, Ming Hui;Tan, Angie Lay Keng;Ting, Shamaine Ho Wei;Luftig, Micah A.;Kappei, Dennis;Kruger, Warren D.;Bian, Jinsong;Ho, Ying Swan;Teh, Ming;Rozen, Steve George;Tan, Patrick. And the article was included in Genome Biology in 2021.Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate The following contents are mentioned in the article:

CIMP (CpG island methylator phenotype) is an epigenetic mol. subtype, observed in multiple malignancies and associated with the epigenetic silencing of tumor suppressors. Currently, for most cancers including gastric cancer (GC), mechanisms underlying CIMP remain poorly understood. We sought to discover mol. contributors to CIMP in GC, by performing global DNA methylation, gene expression, and proteomics profiling across 14 gastric cell lines, followed by similar integrative anal. in 50 GC cell lines and 467 primary GCs. We identify the cystathionine beta-synthase enzyme (CBS) as a highly recurrent target of epigenetic silencing in CIMP GC. Likewise, we show that CBS epimutations are significantly associated with CIMP in various other cancers, occurring even in premalignant gastroesophageal conditions and longitudinally linked to clin. persistence. Of note, CRISPR deletion of CBS in normal gastric epithelial cells induces widespread DNA methylation changes that overlap with primary GC CIMP patterns. Reflecting its metabolic role as a gatekeeper interlinking the methionine and homocysteine cycles, CBS loss in vitro also causes reductions in the anti-inflammatory gasotransmitter hydrogen sulfide (H2S), with concomitant increase in NF-κ B activity. In a murine genetic model of CBS deficiency, preliminary data indicate upregulated immune-mediated transcriptional signatures in the stomach. Our results implicate CBS as a bi-faceted modifier of aberrant DNA methylation and inflammation in GC and highlights H2S donors as a potential new therapy for CBS-silenced lesions. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Rajabi, Mojgan et al. published their research in Clinical and Experimental Pharmacology and Physiology in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Pretreatment with nicotinamide mononucleotide increases the effect of ischaemic postconditioning on cardioprotection and mitochondrial function following ex vivo myocardial reperfusion injury in aged rats was written by Rajabi, Mojgan;Vafaee, Manouchehr S.;Hosseini, Leila;Badalzadeh, Reza. And the article was included in Clinical and Experimental Pharmacology and Physiology in 2022.Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate The following contents are mentioned in the article:

The present study aims to evaluate the combined effect of ischemic postconditioning (IPostC) and NMN (NMN) on cardioprotection and mitochondrial function in aged rats subjected to myocardial ischemia-reperfusion (IR) injury. Sixty aged Wistar rats were randomly divided into five groups (n = 12), including sham, control, NMN, IPostC, and NMN + IPostC. Regional ischemia was induced by 30-min occlusion of the left anterior descending coronary artery (LAD) followed by 60-min reperfusion. IPostC was applied at the onset of reperfusion, by six cycles of 10-s reperfusion/ischemia. NMN (100 mg/kg) was i.p. injected every other day for 28 days before IR. Myocardial haemodynamics and infarct size (IS) were measured, and the left ventricles samples were harvested to assess cardiac mitochondrial function. The results showed that all treatments reduced lactate dehydrogenase release compared to those of the control group. IPostC alone failed to reduce IS and myocardial function. However, NMN and combined therapy could significantly improve myocardial function and decrease the IS compared to the control animals. Moreover, the effects of combined therapy on the decrease of IS, mitochondrial reactive oxygen species (ROS), and improvement of mitochondrial membrane potential (MMP) were greater than those of stand-alone treatments. These results demonstrated that cardioprotection by combined therapy with NMN + IPostC was superior to individual treatments, and pretreatment of aged rats with NMN was able to correct the failure of IPostC in protecting the hearts of aged rats against IR injury. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Name: ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Rajabi, Mojgan et al. published their research in Clinical and Experimental Pharmacology and Physiology in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Safety of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Pretreatment with nicotinamide mononucleotide increases the effect of ischaemic postconditioning on cardioprotection and mitochondrial function following ex vivo myocardial reperfusion injury in aged rats was written by Rajabi, Mojgan;Vafaee, Manouchehr S.;Hosseini, Leila;Badalzadeh, Reza. And the article was included in Clinical and Experimental Pharmacology and Physiology in 2022.Safety of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate The following contents are mentioned in the article:

The present study aims to evaluate the combined effect of ischemic postconditioning (IPostC) and NMN (NMN) on cardioprotection and mitochondrial function in aged rats subjected to myocardial ischemia-reperfusion (IR) injury. Sixty aged Wistar rats were randomly divided into five groups (n = 12), including sham, control, NMN, IPostC, and NMN + IPostC. Regional ischemia was induced by 30-min occlusion of the left anterior descending coronary artery (LAD) followed by 60-min reperfusion. IPostC was applied at the onset of reperfusion, by six cycles of 10-s reperfusion/ischemia. NMN (100 mg/kg) was i.p. injected every other day for 28 days before IR. Myocardial haemodynamics and infarct size (IS) were measured, and the left ventricles samples were harvested to assess cardiac mitochondrial function. The results showed that all treatments reduced lactate dehydrogenase release compared to those of the control group. IPostC alone failed to reduce IS and myocardial function. However, NMN and combined therapy could significantly improve myocardial function and decrease the IS compared to the control animals. Moreover, the effects of combined therapy on the decrease of IS, mitochondrial reactive oxygen species (ROS), and improvement of mitochondrial membrane potential (MMP) were greater than those of stand-alone treatments. These results demonstrated that cardioprotection by combined therapy with NMN + IPostC was superior to individual treatments, and pretreatment of aged rats with NMN was able to correct the failure of IPostC in protecting the hearts of aged rats against IR injury. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Safety of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Safety of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Zou, Congming et al. published their research in Journal of Nanobiotechnology in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Product Details of 1094-61-7

Comparative physiological and metabolomic analyses reveal that Fe3O4 and ZnO nanoparticles alleviate Cd toxicity in tobacco was written by Zou, Congming;Lu, Tianquan;Wang, Ruting;Xu, Peng;Jing, Yifen;Wang, Ruling;Xu, Jin;Wan, Jinpeng. And the article was included in Journal of Nanobiotechnology in 2022.Product Details of 1094-61-7 The following contents are mentioned in the article:

Heavy metals repress tobacco growth and quality, and engineered nanomaterials have been used for sustainable agriculture. However, the underlying mechanism of nanoparticle-mediated cadmium (Cd) toxicity in tobacco remains elusive. Herein, we investigated the effects of Fe3O4 and ZnO nanoparticles (NPs) on Cd stress in tobacco cultivar Yunyan 87 (Nicotianatabacum). Cd severely repressed tobacco growth, whereas foliar spraying with Fe3O4 and ZnO NPs promoted plant growth, as indicated by enhancing plant height, root length, shoot and root fresh weight under Cd toxicity. Moreover, Fe3O4 and ZnO NPs increased, including Zn, K and Mn contents, in the roots and/or leaves and facilitated seedling growth under Cd stress. Metabolomics anal. showed that 150 and 76 metabolites were differentially accumulated in roots and leaves under Cd stress, resp. These metabolites were significantly enriched in the biosynthesis of amino acids, nicotinate and nicotinamide metabolism, arginine and proline metabolism, and flavone and flavonol biosynthesis. Interestingly, Fe3O4 and ZnO NPs restored 50% and 47% in the roots, while they restored 70% and 63% in the leaves to normal levels, thereby facilitating plant growth. Correlation anal. further indicated that these metabolites, including proline, 6-hydroxynicotinic acid, farrerol and quercetin-3-O-sophoroside, were significantly correlated with plant growth. These results collectively indicate that metal nanoparticles can serve as plant growth regulators and provide insights into using them for improving crops in heavy metal-contaminated areas. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Product Details of 1094-61-7).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Product Details of 1094-61-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Zou, Congming et al. published their research in Journal of Nanobiotechnology in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Quality Control of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Comparative physiological and metabolomic analyses reveal that Fe3O4 and ZnO nanoparticles alleviate Cd toxicity in tobacco was written by Zou, Congming;Lu, Tianquan;Wang, Ruting;Xu, Peng;Jing, Yifen;Wang, Ruling;Xu, Jin;Wan, Jinpeng. And the article was included in Journal of Nanobiotechnology in 2022.Quality Control of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate The following contents are mentioned in the article:

Heavy metals repress tobacco growth and quality, and engineered nanomaterials have been used for sustainable agriculture. However, the underlying mechanism of nanoparticle-mediated cadmium (Cd) toxicity in tobacco remains elusive. Herein, we investigated the effects of Fe3O4 and ZnO nanoparticles (NPs) on Cd stress in tobacco cultivar Yunyan 87 (Nicotianatabacum). Cd severely repressed tobacco growth, whereas foliar spraying with Fe3O4 and ZnO NPs promoted plant growth, as indicated by enhancing plant height, root length, shoot and root fresh weight under Cd toxicity. Moreover, Fe3O4 and ZnO NPs increased, including Zn, K and Mn contents, in the roots and/or leaves and facilitated seedling growth under Cd stress. Metabolomics anal. showed that 150 and 76 metabolites were differentially accumulated in roots and leaves under Cd stress, resp. These metabolites were significantly enriched in the biosynthesis of amino acids, nicotinate and nicotinamide metabolism, arginine and proline metabolism, and flavone and flavonol biosynthesis. Interestingly, Fe3O4 and ZnO NPs restored 50% and 47% in the roots, while they restored 70% and 63% in the leaves to normal levels, thereby facilitating plant growth. Correlation anal. further indicated that these metabolites, including proline, 6-hydroxynicotinic acid, farrerol and quercetin-3-O-sophoroside, were significantly correlated with plant growth. These results collectively indicate that metal nanoparticles can serve as plant growth regulators and provide insights into using them for improving crops in heavy metal-contaminated areas. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Quality Control of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Quality Control of ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Kim, Hyun-Woo et al. published their research in Theranostics in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Synthetic Route of C11H15N2O8P

NAD+ -boosting molecules suppress mast cell degranulation and anaphylactic responses in mice was written by Kim, Hyun-Woo;Ryoo, Ga-Hee;Jang, Hyun-Young;Rah, So-Young;Lee, Dong Hyun;Kim, Do-Kyun;Bae, Eun Ju;Park, Byung-Hyun. And the article was included in Theranostics in 2022.Synthetic Route of C11H15N2O8P The following contents are mentioned in the article:

NAD (NAD +) acts as a cofactor for multiple biol. processes. While previous research has revealed that the NAD + declines associated with aging contributes to an impairment of immune cells, its role in mast cell function, especially in response to an anaphylactic condition, has remained unexplored. Author tested whether the restoration of cellular NAD + concentration by the supplementation of NAD + boosting mols. prevented mast cell degranulation and anaphylactic responses. Bone marrow derived mast cells (BMMCs) and human cord blood derived mast cells were treated with NAD + precursors NMN (NMN) and nicotinamide riboside (NR), and FceRI downstream signaling was assessed. Animal models of passive systemic anaphylaxis (PSA) and passive cutaneous anaphylaxis (PCA) were used to investigate the effects of NAD + precursors in the anaphylactic responses of mice. Treatment of murine BMMCs and human cord blood derived mast cells with NAD + precursors repressed intracellular signaling downstream of FceRI, as well as the release of inflammatory cytokines and lipid mediators. The i.p. administration of NMN or NR also markedly attenuated IgE-mediated anaphylactic responses in mouse models of PSA and PCA. These beneficial effects of NAD + precursors, however, were attenuated in mast cell-specific Sirt6 knockout mice, indicating a Sirt6 dependency for their action. NAD + precursors may serve as an effective therapeutic strategy that limits mast cell-mediated anaphylactic responses. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Synthetic Route of C11H15N2O8P).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Synthetic Route of C11H15N2O8P

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Jeje, Olamide et al. published their research in International Journal of Molecular Sciences in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Product Details of 1094-61-7

Effect of Divalent Metal Ion on the Structure, Stability and Function of Klebsiella pneumoniae Nicotinate-Nucleotide Adenylyltransferase: Empirical and Computational Studies was written by Jeje, Olamide;Maake, Reabetswe;van Deventer, Ruan;Esau, Veruschka;Iwuchukwu, Emmanuel Amarachi;Meyer, Vanessa;Khoza, Thandeka;Achilonu, Ikechukwu. And the article was included in International Journal of Molecular Sciences in 2022.Product Details of 1094-61-7 The following contents are mentioned in the article:

The continuous threat of drug-resistant Klebsiella pneumoniae justifies identifying novel targets and developing effective antibacterial agents. A potential target is nicotinate nucleotide adenylyltransferase (NNAT), an indispensable enzyme in the biosynthesis of the cell-dependent metabolite, NAD+. NNAT catalyzes the adenylation of nicotinamide/nicotinate mononucleotide (NMN/NaMN), using ATP to form nicotinamide/nicotinate adenine dinucleotide (NAD+/NaAD). In addition, it employs divalent cations for co-substrate binding and catalysis and has a preference for different divalent cations. Here, the biophys. structure of NNAT from K. pneumoniae (KpNNAT) and the impact of divalent cations on its activity, conformational stability and substrate-binding are described using exptl. and computational approaches. The exptl. study was executed using an enzyme-coupled assay, far-UV CD, extrinsic fluorescence spectroscopy, and thermal shift assays, alongside homol. modeling, mol. docking, and mol. dynamic simulation. The structure of KpNNAT revealed a predominately α-helical secondary structure content and a binding site that is partially hydrophobic. Its substrates ATP and NMN share the same binding pocket with similar affinity and exhibit an energetically favorable binding. KpNNAT showed maximum activity and minimal conformational changes with Mg2+ as a cofactor compared to Zn2+, Cu2+ and Ni2+. Overall, ATP binding affects KpNNAT dynamics, and the dynamics of ATP binding depend on the presence and type of divalent cation. The data obtained from this study would serve as a basis for further evaluation towards designing structure-based inhibitors with therapeutic potential. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Product Details of 1094-61-7).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Product Details of 1094-61-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Jeje, Olamide et al. published their research in International Journal of Molecular Sciences in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.COA of Formula: C11H15N2O8P

Effect of Divalent Metal Ion on the Structure, Stability and Function of Klebsiella pneumoniae Nicotinate-Nucleotide Adenylyltransferase: Empirical and Computational Studies was written by Jeje, Olamide;Maake, Reabetswe;van Deventer, Ruan;Esau, Veruschka;Iwuchukwu, Emmanuel Amarachi;Meyer, Vanessa;Khoza, Thandeka;Achilonu, Ikechukwu. And the article was included in International Journal of Molecular Sciences in 2022.COA of Formula: C11H15N2O8P The following contents are mentioned in the article:

The continuous threat of drug-resistant Klebsiella pneumoniae justifies identifying novel targets and developing effective antibacterial agents. A potential target is nicotinate nucleotide adenylyltransferase (NNAT), an indispensable enzyme in the biosynthesis of the cell-dependent metabolite, NAD+. NNAT catalyzes the adenylation of nicotinamide/nicotinate mononucleotide (NMN/NaMN), using ATP to form nicotinamide/nicotinate adenine dinucleotide (NAD+/NaAD). In addition, it employs divalent cations for co-substrate binding and catalysis and has a preference for different divalent cations. Here, the biophys. structure of NNAT from K. pneumoniae (KpNNAT) and the impact of divalent cations on its activity, conformational stability and substrate-binding are described using exptl. and computational approaches. The exptl. study was executed using an enzyme-coupled assay, far-UV CD, extrinsic fluorescence spectroscopy, and thermal shift assays, alongside homol. modeling, mol. docking, and mol. dynamic simulation. The structure of KpNNAT revealed a predominately α-helical secondary structure content and a binding site that is partially hydrophobic. Its substrates ATP and NMN share the same binding pocket with similar affinity and exhibit an energetically favorable binding. KpNNAT showed maximum activity and minimal conformational changes with Mg2+ as a cofactor compared to Zn2+, Cu2+ and Ni2+. Overall, ATP binding affects KpNNAT dynamics, and the dynamics of ATP binding depend on the presence and type of divalent cation. The data obtained from this study would serve as a basis for further evaluation towards designing structure-based inhibitors with therapeutic potential. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7COA of Formula: C11H15N2O8P).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.COA of Formula: C11H15N2O8P

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics