Galindo Casas, Meritxell’s team published research in ACS Synthetic Biology in 9 | CAS: 2418-95-3

ACS Synthetic Biology published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Computed Properties of 2418-95-3.

Galindo Casas, Meritxell published the artcileDecoupling Protein Production from Cell Growth Enhances the Site-Specific Incorporation of Noncanonical Amino Acids in E. coli, Computed Properties of 2418-95-3, the publication is ACS Synthetic Biology (2020), 9(11), 3052-3066, database is CAplus and MEDLINE.

The site-specific incorporation of noncanonical amino acids (ncAAs) into proteins by amber stop codon suppression has become a routine method in academic laboratories This approach requires an amber suppressor tRNACUA to read the amber codon and an aminoacyl-tRNA synthetase to charge the tRNACUA with the ncAA. However, a major drawback is the low yield of the mutant protein in comparison to the wild type. This effect primarily results from the competition of release factor 1 with the charged suppressor tRNACUA for the amber codon at the A-site of the ribosome. A number of laboratories have attempted to improve the incorporation efficiency of ncAAs with moderate results. The authors aimed at increasing the efficiency to produce high yields of ncAA-functionalized proteins in a scalable setting for industrial application. To do this, the authors inserted an ncAA into the enhanced green fluorescent protein and an antibody mimetic mol. using an industrial E. coli strain, which produces recombinant proteins independent of cell growth. The controlled decoupling of recombinant protein production from cell growth considerably increased the incorporation of the ncAA, producing substantially higher protein yields vs. the reference E. coli strain BL21(DE3). The target proteins were expressed at high levels, and the ncAA was efficiently incorporated with excellent fidelity while the protein function was preserved.

ACS Synthetic Biology published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Computed Properties of 2418-95-3.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Monty, Olivier B. C.’s team published research in ACS Combinatorial Science in 22 | CAS: 2418-95-3

ACS Combinatorial Science published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Recommanded Product: H-Lys(Boc)-OH.

Monty, Olivier B. C. published the artcileSolution-phase fmoc-based peptide synthesis for DNA-encoded chemical libraries: Reaction conditions, protecting group strategies, and pitfalls, Recommanded Product: H-Lys(Boc)-OH, the publication is ACS Combinatorial Science (2020), 22(12), 833-843, database is CAplus and MEDLINE.

Peptide drug discovery has shown a resurgence since 2000, bringing 28 non-insulin therapeutics to the market compared to 56 since its first peptide drug, insulin, in 1923. While the main method of discovery has been biol. display-phage, mRNA, and ribosome-the synthetic limitations of biol. systems has restricted the depth of exploration of peptide chem. space. In contrast, DNA-encoded chem. offers the synergy of large numbers and ribosome-independent synthetic flexibility for the fast and deeper exploration of the same space. Hence, as a bridge to building DNA-encoded chem. libraries (DECLs) of peptides, we have developed substrate-tolerant amide coupling reaction conditions for amino acid monomers, performed a coupling screen to illustrate such tolerance, developed protecting group strategies for relevant amino acids and reported the limitations thereof, developed a strategy for the coupling of α,α-disubstituted alkenyl amino acids relevant to all-hydrocarbon stapled peptide drug discovery, developed reaction conditions for the coupling of tripeptides likely to be used in DECL builds, and synthesized a fully deprotected DNA-decamer conjugate to illustrate the potency of the developed methodol. for on-DNA peptide synthesis.

ACS Combinatorial Science published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Recommanded Product: H-Lys(Boc)-OH.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Zhang, Yu’s team published research in Chemical Communications (Cambridge, United Kingdom) in 56 | CAS: 2418-95-3

Chemical Communications (Cambridge, United Kingdom) published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C5H5NO3S, Formula: C11H22N2O4.

Zhang, Yu published the artcileFacile and scalable synthesis of topologically nanoengineered polypeptides with excellent antimicrobial activities, Formula: C11H22N2O4, the publication is Chemical Communications (Cambridge, United Kingdom) (2020), 56(3), 356-359, database is CAplus and MEDLINE.

A facile and scalable strategy for the quick library synthesis of linear-, hinged-, star-, and cyclic-polypeptides with broad-spectrum antimicrobial activity has been reported. The topol. nanoengineered polypeptides show superior antimicrobial activity against Gram-pos. and Gram-neg. bacteria and low toxicity, allowing screening of architectural polypeptides as mimics of host defense peptides for antimicrobials.

Chemical Communications (Cambridge, United Kingdom) published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C5H5NO3S, Formula: C11H22N2O4.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Zheng, Yiwu’s team published research in ChemMedChem in 14 | CAS: 2418-95-3

ChemMedChem published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C9H10O4, Synthetic Route of 2418-95-3.

Zheng, Yiwu published the artcileStabilizing p-Dithiobenzyl Urethane Linkers without Rate-Limiting Self-Immolation for Traceless Drug Release, Synthetic Route of 2418-95-3, the publication is ChemMedChem (2019), 14(12), 1196-1203, database is CAplus and MEDLINE.

Exploiting the redox sensitivity of disulfide bonds is a prevalent strategy in targeted prodrug designs. In contrast to aliphatic disulfides, p-thiobenzyl-based disulfides have rarely been used for prodrug designs, given their intrinsic instability caused by the low pKa of aromatic thiols. Here, we examined the interplay between steric hindrance and the low-pKa effect on thiol-disulfide exchange reactions and uncovered a new thiol-disulfide exchange process for the self-immolation of p-thiobenzyl-based disulfides. We observed a central leaving group shifting effect in the α,α-dimethyl-substituted p-dithiobenzyl urethane linkers (DMTB linkers), which leads to increased disulfide stability by more than two orders of magnitude, an extent that is significantly greater than that observed with typical aliphatic disulfides. In particular, the DMTB linkers display not only high stability, but also rapid self-immolation kinetics due to the low pKa of the aromatic thiol, which can be used as a general and robust linkage between targeting reagents and cytotoxic drugs for targeted prodrug designs. The unique and promising stability characteristics of the present DMTB linker will likely inspire the development of novel targeted prodrugs to achieve traceless release of drugs into cells.

ChemMedChem published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C9H10O4, Synthetic Route of 2418-95-3.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Holm, Regina’s team published research in Macromolecular Bioscience in 20 | CAS: 2418-95-3

Macromolecular Bioscience published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Product Details of C11H22N2O4.

Holm, Regina published the artcileMultifunctional Cationic PeptoStars as siRNA Carrier: Influence of Architecture and Histidine Modification on Knockdown Potential, Product Details of C11H22N2O4, the publication is Macromolecular Bioscience (2020), 20(1), 1900152, database is CAplus and MEDLINE.

RNA interference provides enormous potential for the treatment of several diseases, including cancer. Nevertheless, successful therapies based on siRNA require overcoming various challenges, such as poor pharmacokinetic characteristics of the small RNA mol. and inefficient cytosolic accumulation. In this respect, the development of functional siRNA carrier systems is a major task in biomedical research. To provide such a desired system, the synthesis of 3-arm and 6-arm PeptoStars is aimed for. The different branched polypept(o)idic architectures share a stealth-like polysarcosine corona for efficient shielding and a multifunctional polylysine core, which can be independently varied in size and functionality for siRNA complexation-, transport and intra cellular release. The special feature of star-like polypept(o)ides is in their uniform small size (<20 nm) and a core-shell structure, which implies a high stability and stealth-like properties and thus, they may combine long circulation times and a deep penetration of cancerous tissue. Initial toxicity and complement studies demonstrate well tolerated cationic PeptoStars with high complexation capability toward siRNA (N/P ratio up to 3:1), which can lead to potent RNAi for optimized systems. Here, the synthetic development of 3-arm and 6-arm polypept(o)idic star polymers, their modification with endosomolytic moieties, and first in vitro insights on RNA interference are reported on.

Macromolecular Bioscience published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Product Details of C11H22N2O4.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Saniee, Fateme’s team published research in Pharmaceutical Development and Technology in 26 | CAS: 2418-95-3

Pharmaceutical Development and Technology published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Synthetic Route of 2418-95-3.

Saniee, Fateme published the artcileGlutamate-urea-based PSMA-targeted PLGA nanoparticles for prostate cancer delivery of docetaxel, Synthetic Route of 2418-95-3, the publication is Pharmaceutical Development and Technology (2021), 26(4), 381-389, database is CAplus and MEDLINE.

Targeted drug delivery is a tool to make treatment more specific, selective, and effective and to prevent unwanted complications. Prostate specific membrane antigen (PSMA) is a useful biomarker in order to monitor and control prostate cancer. Glutamate-Urea-R (Glu-Urea-R) is a PSMA enzyme inhibitor capable of binding to this surface marker of prostate cancer cell in an efficient and special manner. The aim of this project was to develop a docetaxel-loaded nanoparticle of poly (lactic-co-glycolic acid) polyethylene glycol which is cojugated to a urea-based anti-PSMA ligand named glutamate-urea-lysine (glu-urea-lys) for targeted delivery of docetaxel in prostate cancer. The obtained nanoparticles, prepared by nanopptn. method, were spheres with a particle size of around 150 nm and zeta potential of -7.08 mV. Uptake studies on the PC3 (as PSMA neg.) and LNCaP (as PSMA pos.) cells demonstrated that drug uptake was efficient by the PSMA pos. cells. IC50 of targeted NPs on LNCaP cell line compared to non-targeted ones was reduced by more than 70% in three different incubation times of 24, 48, and 72 h. In conclusion, the nanoparticles are expected to specifically transport docetaxel to PSMA-pos. prostate cancer cells and consequently, enhance the antitumor efficacy of docetaxel on these cells.

Pharmaceutical Development and Technology published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Synthetic Route of 2418-95-3.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Bridge, Thomas’s team published research in Angewandte Chemie, International Edition in 58 | CAS: 2418-95-3

Angewandte Chemie, International Edition published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Quality Control of 2418-95-3.

Bridge, Thomas published the artcileSite-Specific Encoding of Photoactivity in Antibodies Enables Light-Mediated Antibody-Antigen Binding on Live Cells, Quality Control of 2418-95-3, the publication is Angewandte Chemie, International Edition (2019), 58(50), 17986-17993, database is CAplus and MEDLINE.

Antibodies found applications in several fields, including, medicine, diagnostics, and nanotechnol., yet methods to modulate antibody-antigen binding using an external agent remain limited. Here, the authors have developed photoactive antibody fragments by genetic site-specific replacement of single tyrosine residues with photocaged tyrosine, in an antibody fragment, 7D12. A simple and robust assay is adopted to evaluate the light-mediated binding of 7D12 mutants to its target, epidermal growth factor receptor (EGFR), on the surface of cancer cells. Presence of photocaged tyrosine reduces 7D12-EGFR binding affinity by over 20-fold in two out of three 7D12 mutants studied, and binding is restored upon exposure to 365 nm light. Mol. dynamics simulations explain the difference in effect of photocaging on 7D12-EGFR interaction among the mutants. Finally, the authors demonstrate the application of photoactive antibodies in delivering fluorophores to EGFR-pos. live cancer cells in a light-dependent manner.

Angewandte Chemie, International Edition published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Quality Control of 2418-95-3.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Matsumoto, Takuya’s team published research in Chemical Communications (Cambridge, United Kingdom) in 54 | CAS: 2418-95-3

Chemical Communications (Cambridge, United Kingdom) published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Related Products of amides-buliding-blocks.

Matsumoto, Takuya published the artcileA catalytic one-step synthesis of peptide thioacids: the synthesis of leuprorelin via iterative peptide-fragment coupling reactions, Related Products of amides-buliding-blocks, the publication is Chemical Communications (Cambridge, United Kingdom) (2018), 54(86), 12222-12225, database is CAplus and MEDLINE.

A catalytic one-step synthesis of peptide thioacids was developed. The oxygen-sulfur atom exchange reaction converted the carboxy group at the C-terminus of the peptides into a thiocarboxy group with suppressed epimerization. This method was successfully applied to the synthesis of the peptide drug leuprorelin via an iterative fragment-coupling protocol.

Chemical Communications (Cambridge, United Kingdom) published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Related Products of amides-buliding-blocks.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Schaefer, Olga’s team published research in Tetrahedron Letters in 60 | CAS: 2418-95-3

Tetrahedron Letters published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, SDS of cas: 2418-95-3.

Schaefer, Olga published the artcileInvestigation of α-amino acid N-carboxyanhydrides by X-ray diffraction for controlled ring-opening polymerization, SDS of cas: 2418-95-3, the publication is Tetrahedron Letters (2019), 60(3), 272-275, database is CAplus.

The need for a scalable synthesis of not sequence defined polypeptides as biomaterials is met by the ring-opening polymerization of α-amino acid N-carboxyanhydrides (NCAs). Even though this polymerization technique appears straight forward, it holds pitfalls in terms of reproducibility and overall control over the polymerization conditions, which depends, beside choice of solvent or initiator, significantly on reagent purity. In addition, the synthesis of monomers can lead to the formation of racemic amino acids. Thus, in this work, we describe the benefits of highly pure monomers in order to control nucleophilic ring-opening polymerization NCAs. Hereby, monomer purity is investigated by relating m.ps. of NCAs with single-crystal and powder X-ray diffraction crystallog. data, which further proves retained stereo-information of NCAs.

Tetrahedron Letters published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, SDS of cas: 2418-95-3.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics

Volpi, Stefano’s team published research in Organic Letters in 23 | CAS: 2418-95-3

Organic Letters published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C5H5F3O2, Name: H-Lys(Boc)-OH.

Volpi, Stefano published the artcileSubmonomeric strategy with minimal protection for the synthesis of C(2)-modified peptide nucleic acids, Name: H-Lys(Boc)-OH, the publication is Organic Letters (2021), 23(3), 902-907, database is CAplus and MEDLINE.

A novel synthesis of C(2)-modified peptide nucleic acids (PNAs) is proposed, using a submonomeric strategy with minimally protected building blocks, which allowed a reduction in the required synthetic steps. N(3)-unprotected, D-Lys- and D-Arg-based backbones were used to obtain pos. charged PNAs with high optical purity, as inferred from chiral GC measurements. “Chiral-box” PNAs targeting the G12D point mutation of the KRAS gene were produced using this method, showing improved sequence selectivity for the mutated- vs wild-type DNA strand with respect to unmodified PNAs.

Organic Letters published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C5H5F3O2, Name: H-Lys(Boc)-OH.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics