Bryson, David I. published the artcileContinuous directed evolution of aminoacyl-tRNA synthetases, Name: H-Lys(Boc)-OH, the publication is Nature Chemical Biology (2017), 13(12), 1253-1260, database is CAplus and MEDLINE.
Directed evolution of orthogonal aminoacyl-tRNA synthetases (AARSs) enables site-specific installation of noncanonical amino acids (ncAAs) into proteins. Traditional evolution techniques typically produce AARSs with greatly reduced activity and selectivity compared to their wild-type counterparts. We designed phage-assisted continuous evolution (PACE) selections to rapidly produce highly active and selective orthogonal AARSs through hundreds of generations of evolution. PACE of a chimeric Methanosarcina spp. pyrrolysyl-tRNA synthetase (PylRS) improved its enzymic efficiency (kcat/KMtRNA) 45-fold compared to the parent enzyme. Transplantation of the evolved mutations into other PylRS-derived synthetases improved yields of proteins containing noncanonical residues up to 9.7-fold. Simultaneous pos. and neg. selection PACE over 48 h greatly improved the selectivity of a promiscuous Methanocaldococcus jannaschii tyrosyl-tRNA synthetase variant for site-specific incorporation of p-iodo-
Nature Chemical Biology published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Name: H-Lys(Boc)-OH.
Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics