Si, Dongjuan et al. published their research in Bioorganic Chemistry in 2021 | CAS: 10268-06-1

2-(2-Chlorophenyl)acetamide (cas: 10268-06-1) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.Application In Synthesis of 2-(2-Chlorophenyl)acetamide

Design, synthesis and biological evaluation of novel pyrrolidone-based derivatives as potent p53-MDM2 inhibitors was written by Si, Dongjuan;Luo, Huijuan;Zhang, Xiaomeng;Yang, Kundi;Wen, Hongmei;Li, Wei;Liu, Jian. And the article was included in Bioorganic Chemistry in 2021.Application In Synthesis of 2-(2-Chlorophenyl)acetamide This article mentions the following:

Inhibition of the interactions of the tumor suppressor protein p53 with its neg. regulators MDM2 in vitro and in vivo, representing a valuable therapeutic strategy for cancer treatment. The natural product chalcone exhibited moderate inhibitory activity against MDM2, thus based on the binding mode between chalcone and MDM2, a hit unsaturated pyrrolidone scaffold was obtained through virtual screening. Several unsaturated pyrrolidone derivatives were synthesized and biol. evaluated. As a result, because the three critical hydrophobic pockets of MDM2 were occupied by the substituted-Ph linked at the pyrrolidone fragment, compound I demonstrated good binding affinity with the MDM2. Addnl., compound I also showed excellent antitumor activity and selectivity, and no cytotoxicity against normal cells in vitro. The further antitumor mechanism studies were indicated that compound I could successfully induce the activation of p53 and corresponding downstream p21 proteins, thus successfully causing HCT116 cell cycle arrest in the G1/M phase and apoptosis. Thus, the novel unsaturated pyrrolidone p53-MDM2 inhibitors could be developed as novel antitumor agents. In the experiment, the researchers used many compounds, for example, 2-(2-Chlorophenyl)acetamide (cas: 10268-06-1Application In Synthesis of 2-(2-Chlorophenyl)acetamide).

2-(2-Chlorophenyl)acetamide (cas: 10268-06-1) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.Application In Synthesis of 2-(2-Chlorophenyl)acetamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Abed, Donya Ziafatdoost et al. published their research in Journal of Ethnopharmacology in 2022 | CAS: 10238-21-8

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Related Products of 10238-21-8

Thymus persicus (Ronniger ex Rech. f.) Jalas alleviates nociceptive and neuropathic pain behavior in mice: Multiple mechanisms of action was written by Abed, Donya Ziafatdoost;Sadeghian, Reyhaneh;Mohammadi, Saeed;Akram, Muhammad. And the article was included in Journal of Ethnopharmacology in 2022.Related Products of 10238-21-8 This article mentions the following:

Thymus persicus (Roniger ex Reach F.) is an Iranian endemic medicinal plant of which essential oil and various products have numerous food and pharmaceutical applications (headache and fever treatments). This modern research included Swiss mice to investigate the anti-nociceptive and anti-neuropathic effects of Thymus persicus aerial parts essential oil (TPEO). To determine TPEO′s anti-nociceptive function in the formalin-induced paw licking (FML), researchers looked at the L-arginine/NO/cGMP/KATP channel signaling pathway as well as multiple receptors as with serotonin, morphine, dopamine, and peroxisome proliferator-activated receptors. The CVC or cervical spinal cord contusion exemplar has also been used to induce neuropathic pain. TPEO (50, 100, and 150 mg/kg) relative to control mice in the phase-II of FML provided strong antinociception (p < 0.05, p < 0.01, p < 0.001, resp.). Furthermore, methylene blue, glibenclamide, Nω-nitro-L-arginine Me ester, naloxonazine, nor-binaltorphimine, prazosin, yohimbine, and ondansetron pre-treating restored the TPEO anti-nociceptive activity in the FML (phase-II) exemplar (p < 0.05). In phase-II of the FML exemplar, carvacrol (one of the active components of TPEO) also greatly reduced pain (p < 0.001). Likewise, in CVC mice, TPEO altered mech. allodynia and hyperalgesia. It was attained magnificently that TPEO could exerts antinociceptive effects through the involvement of L-arginine/NO/cGMP/KATP signaling pathway, adrenergic, opioid, and serotonin receptors. Moreover, it is demonstrate that anti-neuropathic activity of TPEO may be mediated by inflammatory function. In the experiment, the researchers used many compounds, for example, 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8Related Products of 10238-21-8).

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Related Products of 10238-21-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Lo Re, Daniele et al. published their research in Chemical Communications (Cambridge, United Kingdom) in 2018 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Computed Properties of C18H17NO5

Increased immune cell infiltration in patient-derived tumor explants treated with Traniplatin: an original Pt(IV) pro-drug based on Cisplatin and Tranilast was written by Lo Re, Daniele;Montagner, Diego;Tolan, Dina;Di Sanza, Claudio;Iglesias, Mar;Calon, Alexandre;Giralt, E.. And the article was included in Chemical Communications (Cambridge, United Kingdom) in 2018.Computed Properties of C18H17NO5 This article mentions the following:

Elevated intra-tumoral immune infiltrate is associated with an improved prognosis in cancer of distinct origins. Traniplatin (TPT) is a novel platinum(IV) pro-drug based on Cisplatin (CDDP) and the marketed drug Tranilast. When compared in vitro to Cisplatin, TPT showed increased cytotoxic activity against colon and lung cancer cells but decreased activity against immune cells. In addition, TPT efficiency was evaluated in tumor explants derived from colorectal cancer samples from patients subjected to intended curative surgery. TPT induced strong intra-tumoral cytotoxic activity yet was associated with an elevated presence of immune cell infiltrate, suggesting a reduced cytotoxic activity against immune cells in colorectal cancer. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Computed Properties of C18H17NO5).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Computed Properties of C18H17NO5

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Fearn, James E. et al. published their research in Journal of Agricultural and Food Chemistry in 1965 | CAS: 2670-38-4

3,4-Dichlorobenzamide (cas: 2670-38-4) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Computed Properties of C7H5Cl2NO

Correlation between chemical structure and rodent repellency of benzoic acid derivatives was written by Fearn, James E.;DeWitt, James B.. And the article was included in Journal of Agricultural and Food Chemistry in 1965.Computed Properties of C7H5Cl2NO This article mentions the following:

Sixty-five benzoic acid derivatives were either prepared or obtained from com. concerns, tested for rat repellency, and their indexes of repellency computed. The data from these tests were considered anal. for any correlation between chem. structure and rat repellency. The results suggest a qual. relation which is useful in deciding probability of repellency in other compounds In the experiment, the researchers used many compounds, for example, 3,4-Dichlorobenzamide (cas: 2670-38-4Computed Properties of C7H5Cl2NO).

3,4-Dichlorobenzamide (cas: 2670-38-4) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Computed Properties of C7H5Cl2NO

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Niu, Teng et al. published their research in Organic Letters in 2009 | CAS: 116332-61-7

N-Methoxy-N-methyl-4-(trifluoromethyl)benzamide (cas: 116332-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Quality Control of N-Methoxy-N-methyl-4-(trifluoromethyl)benzamide

A powerful reagent for synthesis of Weinreb amides directly from carboxylic acids was written by Niu, Teng;Zhang, Weiming;Huang, Danfeng;Xu, Changming;Wang, Haifeng;Hu, Yulai. And the article was included in Organic Letters in 2009.Quality Control of N-Methoxy-N-methyl-4-(trifluoromethyl)benzamide This article mentions the following:

A powerful reagent, P[NCH3(OCH3)]3, for conversion of carboxylic acids directly to Weinreb amides was developed. In most cases the yields of the corresponding Weinreb amides were above 90% when P[NCH3(OCH3)]3 was heated with aromatic and aliphatic carboxylic acids in toluene. The sterically hindered carboxylic acids can also give the corresponding Weinreb amides in excellent yields. In the experiment, the researchers used many compounds, for example, N-Methoxy-N-methyl-4-(trifluoromethyl)benzamide (cas: 116332-61-7Quality Control of N-Methoxy-N-methyl-4-(trifluoromethyl)benzamide).

N-Methoxy-N-methyl-4-(trifluoromethyl)benzamide (cas: 116332-61-7) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Quality Control of N-Methoxy-N-methyl-4-(trifluoromethyl)benzamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Pilszyk, Aleksandra et al. published their research in International Journal of Molecular Sciences in 2022 | CAS: 10238-21-8

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Category: amides-buliding-blocks

Incretins as a Potential Treatment Option for Gestational Diabetes Mellitus was written by Pilszyk, Aleksandra;Niebrzydowska, Magdalena;Pilszyk, Zuzanna;Wierzchowska-Opoka, Magdalena;Kimber-Trojnar, Zaneta. And the article was included in International Journal of Molecular Sciences in 2022.Category: amides-buliding-blocks This article mentions the following:

Gestational diabetes mellitus (GDM) is a metabolic disease affecting an increasing number of pregnant women around the world. It is not only associated with numerous perinatal complications but also has long-term consequences impacting maternal health and fetal development. To prevent them, it is important to keep glucose levels under control. As much as 15-30% of GDM patients will require treatment with insulin, metformin, or glyburide. With that in mind, it is crucial to keep searching for novel and improved pharmacotherapies. Nowadays, there are ongoing studies investigating the use of other groups of drugs that have proven successful in the treatment of T2DM. Glucagon-like peptide-1 (GLP-1) receptor agonist and dipeptidyl peptidase-4 (DPP-4) inhibitor are among the drugs targeting the incretin system and are currently receiving significant attention. The aim of our review is to demonstrate the potential of these medications in treating GDM and preventing its later complications. It seems that both groups may be successful in the GDM management used alone or as an addition to better-known drugs, including metformin and glyburide. However, more clin. trials are needed to confirm their importance in GDM treatment and to demonstrate effective therapeutic strategies. In the experiment, the researchers used many compounds, for example, 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8Category: amides-buliding-blocks).

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Category: amides-buliding-blocks

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Uehara, Kazuhiro et al. published their research in Angewandte Chemie, International Edition in 2010 | CAS: 192436-83-2

4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Application of 192436-83-2

Poly(vinyl ketone)s by Controlled Boron Group Transfer Polymerization (BGTP) was written by Uehara, Kazuhiro;Wagner, Christine B.;Vogler, Thomas;Luftmann, Heinrich;Studer, Armido. And the article was included in Angewandte Chemie, International Edition in 2010.Application of 192436-83-2 This article mentions the following:

A novel method is presented for controlled radical polymerization of alkyl and aryl vinyl ketones. The process comprises an unprecedented boron group transfer reaction as the key step. Mass spectrometry studies support the suggested mechanism and elucidate possible termination processes. In the experiment, the researchers used many compounds, for example, 4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2Application of 192436-83-2).

4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Application of 192436-83-2

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Wu, Guolin et al. published their research in Bioorganic & Medicinal Chemistry in 2018 | CAS: 2670-38-4

3,4-Dichlorobenzamide (cas: 2670-38-4) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Related Products of 2670-38-4

Synthesis and structure-activity relationship studies of MI-2 analogues as MALT1 inhibitors was written by Wu, Guolin;Wang, Haixia;Zhou, Wenhui;Zeng, Bihua;Mo, Wenhui;Zhu, Kejie;Liu, Rong;Zhou, Jia;Chen, Ceshi;Chen, Haijun. And the article was included in Bioorganic & Medicinal Chemistry in 2018.Related Products of 2670-38-4 This article mentions the following:

Recent studies revealed that MALT1 is a promising therapeutic target for the treatment of ABC-DLBCL. Among several reported MALT1 inhibitors, MI-2 as an irreversible inhibitor represents a new class of ABC-DLBCL therapeutics. Due to its inherent potential cross-reactivity, further structure-activity relationship (SAR) study is imperative. Five focused compound libraries based on the chem. structure of MI-2 are designed and synthesized. The systematic SARs revealed that the side chain of 2-methoxyethoxy has little impact on the activity and can be replaced by other functionalized groups, providing new MI-2 analogs with retained or enhanced potency. Compounds 81-83 with terminal hydroxyl group as side chain displayed enhanced activities against MALT1. Replacement of triazole core with pyrazole is also tolerant, while structural modifications on other sites are detrimental. These findings will facilitate further development of small-mol. MALT1 inhibitors. In the experiment, the researchers used many compounds, for example, 3,4-Dichlorobenzamide (cas: 2670-38-4Related Products of 2670-38-4).

3,4-Dichlorobenzamide (cas: 2670-38-4) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Related Products of 2670-38-4

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Zah, Ayesha et al. published their research in Frontiers in Immunology in 2019 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Recommanded Product: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Pharmacological inhibitors of the NLRP3 inflammasome was written by Zah, Ayesha;Li, Bofeng;Kombe, Arnaud John Kombe;Jin, Tengchuan;Tao, Jinhui. And the article was included in Frontiers in Immunology in 2019.Recommanded Product: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid This article mentions the following:

Inflammasomes play a crucial role in innate immunity by serving as signaling platforms which deal with a plethora of pathogenic products and cellular products associated with stress and damage. By far, the best studied and most characterized inflammasome is NLRP3 inflammasome, which consists of NLRP3 (nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3), ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain), and procaspase-1. Activation of NLRP3 inflammasome is mediated by highly diverse stimuli. Upon activation, NLRP3 protein recruits the adapter ASC protein, which recruits the procaspase-1 resulting in its cleavage and activation, inducing the maturation, and secretion of inflammatory cytokines and pyroptosis. However, aberrant activation of the NLRP3 inflammasome is implicated in various diseases including diabetes, atherosclerosis, metabolic syndrome, cardiovascular, and neurodegenerative diseases; raising a tremendous clin. interest in exploring the potential inhibitors of NLRP3 inflammasome. Recent investigations have disclosed various inhibitors of the NLRP3 inflammasome pathway which were validated through in vitro studies and in vivo experiments in animal models of NLRP3-associated disorders. Some of these inhibitors directly target the NLRP3 protein whereas some are aimed at other components and products of the inflammasome. Direct targeting of NLRP3 protein can be a better choice because it can prevent off target immunosuppressive effects, thus restrain tissue destruction. This paper will review the various pharmacol. inhibitors of the NLRP3 inflammasome and will also discuss their mechanism of action. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Recommanded Product: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Recommanded Product: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Krollik, Katharina et al. published their research in European Journal of Pharmaceutics and Biopharmaceutics in 2022 | CAS: 10238-21-8

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Application In Synthesis of 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide

The effect of buffer species on biorelevant dissolution and precipitation assays – Comparison of phosphate and bicarbonate buffer was written by Krollik, Katharina;Lehmann, Andreas;Wagner, Christian;Kaidas, Jonathan;Kubas, Holger;Weitschies, Werner. And the article was included in European Journal of Pharmaceutics and Biopharmaceutics in 2022.Application In Synthesis of 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide This article mentions the following:

Biorelevant solubility and dissolution testing is an important tool during pharmaceutical development, however, solubility experiments performed using biorelevant media often do not properly match the solubility data observed in human intestinal fluids. Even though the bicarbonate buffer is the predominant buffer system in the small intestine, in vitro assays are commonly performed using non-volatile buffer systems like phosphate and maleate. In the current study, bicarbonate- and phosphate-buffered biorelevant media were applied to solubility, dissolution, and precipitation testing for a broad range of model compounds It was found that the medium affects primarily the dissolution kinetics. However, with the knowledge of the unique buffering properties of bicarbonate buffer in the diffusion layer, it was not always possible to predict the effect of buffer species on solubility and dissolution when changing from phosphate to bicarbonate buffer. This once again highlights the special role of bicarbonate buffer for simulating the conditions in the human intestinal fluids. Moreover, it is necessary to further investigate the factors which may cause the differences in solubility and dissolution behavior when using phosphate- vs. bicarbonate-buffered biorelevant media. In the experiment, the researchers used many compounds, for example, 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8Application In Synthesis of 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide).

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Application In Synthesis of 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics