N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Formula: C10H16N2O4
The wide spectrum high biocidal potency of Bioxy formulation when dissolved in water at different concentrations was written by Dagher, Dori;Ungar, Ken;Robison, Richard;Dagher, Fadi. And the article was included in PLoS One in 2017.Formula: C10H16N2O4 This article mentions the following:
Traditional surface disinfectants that have long been applied in medicine, animal husbandry, manufacturing and institutions are inconvenient at best and dangerous at worst. Moreover, some of these substances have adverse environmental impacts: for example, quaternary ammonium compounds (“quats”) are reproductive toxicants in both fish and mammals. Halogens are corrosive both to metals and living tissues, are highly reactive, can be readily neutralized by metals, and react with organic matter to form toxic, persistent byproducts such as dioxins and furans. Aldehydes may be carcinogenic to both human and animals upon repeated exposures, are corrosive, cross-link living tissues and many synthetic materials, and may lose efficacy when pathogens enzymically adapt to them. Alcs. are flammable and volatile and can be enzymically degraded by certain bacterial pathogens. Quats are highly irritating to mucous membranes and over time can induce pathogen resistance, especially if they are not alternated with functionally different disinfectants. In contrast, peracetic acid (PAA), a potent oxidizer, liberates hydrogen peroxide (itself a disinfectant), biodegrades to carbon dioxide, water and oxygen, and is at least as efficacious as contact biocides e.g., halogens and aldehydes. Nevertheless, the standard form of liquid PAA is highly corrosive, is neutralized by metals and organic matter, gives off noxious odors and must be stored in vented containers. For the reasons stated above, Bioxy formulations were developed, a series of powder forms of PAA, which are odorless, stable in storage and safe to transport and handle. They generate up to 10% PAA in situ when dissolved in water. A 0.2% aqueous solution of Bioxy (equivalent to 200 ppm PAA) effected a 6.76 log reduction in Methicillin-resistant Staphylococcus aureus (MRSA) within 2 min after application. A 5% aqueous solution of Bioxy achieved a 3.93 log reduction in the bovine tuberculosis bacillus Mycobacterium bovis, within 10 min after contact. A 1% solution of Bioxy reduced vancomycin-resistant enterococci (VRE) and Pseudomonas aeruginosa by 6.31 and 7.18 logs, resp., within 3 min after application. A 0.5% solution of Bioxy inactivated porcine epidemic diarrhea virus (PEDV) within 15 min of contact, and a 5% solution of Bioxy realized a 5.36 log reduction in the spores of Clostridium difficile within 10 min of application. In summary, Bioxy is safe and easy to transport and store, poses negligible human, animal and environmental health risks, shows high levels of pathogen control efficacy and does not induce microbial resistance. Further investigations are recommended to explore its use as an industrial biocide. In the experiment, the researchers used many compounds, for example, N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4Formula: C10H16N2O4).
N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Formula: C10H16N2O4
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics