Mahnam, Karim et al. published their research in Journal of Biomolecular Structure and Dynamics | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Electric Literature of C18H17NO5

Finding a prospective dual-target drug for the treatment of coronavirus disease by theoretical study was written by Mahnam, Karim;Ghobadi, Zahra. And the article was included in Journal of Biomolecular Structure and Dynamics.Electric Literature of C18H17NO5 This article mentions the following:

Spike protein of coronavirus is a key protein in binding and entrance of virus to the human cell via binding to the receptor-binding domain (RBD) domain of S1 subunit to peptidase domain region of ACE2 receptor. In this study, the possible effect of 24 antiviral drugs on the RBD domain of spike protein was investigated via docking and mol. dynamics simulation for finding a dual-target drug. At first, all drugs were docked to the RBD domain of spike protein, and then all complexes and free RBD domains were sep. used for mol. dynamics simulation for 50 ns via amber18 software. The simulation results showed that 10 ligands from 28 ligands were separated from the RBD domain, and among 18 remained ligands, baloxavir marboxil, and danoprevir drugs, besides endonuclease activity and protease inhibitory, can bind to key residues of the RBD domain. Then these drugs have a dual target and should be more effective than current drugs, and exptl. studies should be done on baloxavir marboxil and danoprevir as more potential drugs for coronavirus disease. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Electric Literature of C18H17NO5).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Electric Literature of C18H17NO5

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Kato, Motoyasu et al. published their research in Drug Design, Development and Therapy in 2020 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Quality Control of 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Tranilast inhibits pulmonary fibrosis by suppressing TGFβ/SMAD2 pathway was written by Kato, Motoyasu;Takahashi, Fumiyuki;Sato, Tadashi;Mitsuishi, Yoichiro;Tajima, Ken;Ihara, Hiroaki;Nurwidya, Fariz;Baskoro, Hario;Murakami, Akiko;Kobayashi, Isao;Hidayat, Moulid;Shimada, Naoko;Sasaki, Shinichi;Mineki, Reiko;Fujimura, Tsutomu;Kumasaka, Toshio;Niwa, Shin-ichiro;Takahashi, Kazuhisa. And the article was included in Drug Design, Development and Therapy in 2020.Quality Control of 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid This article mentions the following:

Purpose: Idiopathic pulmonary fibrosis (IPF) is characterized by the accumulation of extracellular matrix (ECM) protein in the lungs. Transforming growth factor (TGF) β- induced ECM protein synthesis contributes to the development of IPF. Tranilast, an antiallergy drug, suppresses TGFβ expression and inhibits interstitial renal fibrosis in animal models. However, the beneficial effects of tranilast or its mechanism as a therapy for pulmonary fibrosis have not been clarified. Methods: We investigated the in vitro effect of tranilast on ECM production and TGFβ/SMAD2 pathway in TGFβ2-stimulated A549 human alveolar epithelial cells, using quant. polymerase chain reaction, Western blotting, and immunofluorescence. In vitro observations were validated in the lungs of a murine pulmonary fibrosis model, which we developed by i.v. injection of bleomycin. Results: Treatment with tranilast suppressed the expression of ECM proteins, such as fibronectin and type IV collagen, and attenuated SMAD2 phosphorylation in TGFβ2-stimulated A549 cells. In addition, based on a wound healing assay in these cells, tranilast significantly inhibited cell motility, with foci formation that comprised of ECM proteins. Histol. analyses revealed that the administration of tranilast significantly attenuated lung fibrosis in mice. Furthermore, tranilast treatment significantly reduced levels of TGFβ, collagen, fibronectin, and phosphorylated SMAD2 in pulmonary fibrotic tissues in mice. Conclusion: These findings suggest that tranilast inhibits pulmonary fibrosis by suppressing TGFβ/SMAD2-mediated ECM protein production, presenting tranilast as a promising and novel anti-fibrotic agent for the treatment of IPF. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Quality Control of 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Quality Control of 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Xie, Huaijun et al. published their research in Environmental Pollution (Oxford, United Kingdom) in 2020 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Recommanded Product: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Screening of 484 trace organic contaminants in coastal waters around the Liaodong Peninsula, China: Occurrence, distribution, and ecological risk was written by Xie, Huaijun;Chen, Jingwen;Huang, Yang;Zhang, Ruohan;Chen, Chang-Er;Li, Xuehua;Kadokami, Kiwao. And the article was included in Environmental Pollution (Oxford, United Kingdom) in 2020.Recommanded Product: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid This article mentions the following:

Human activities such as agriculture, aquaculture, and industry can lead to the pollution of coastal waters by trace organic contaminants (TrOCs), and the TrOCs can pose a threat to marine ecosystems. Therefore, it is essential to investigate the occurrence, distribution, and ecol. risk of the TrOCs in coastal waters. Previous studies adopting conventional anal. methods have focused on a limited number of targets. Herein, a comprehensive and systematic determination was undertaken to target 484 TrOCs in the waters around the Liaodong Peninsula, China. Eighty-six TrOCs were detected at concentrations of up to 350 ng L-1, and 25 TrOCs were detected at a frequency of >50%. Pesticides were the predominant pollutants, occurring at high concentrations with large detection frequencies. Ecol. risks were assessed for single pollutants and mixtures based on the risk quotient and concentration addition modeling, resp. The detected pesticides posed relatively high risk to aquatic organisms, while pharmaceuticals, consumer products, and other pollutants posed little or no risk. TrOC mixtures posed extremely high risk to aquatic organisms, which represented a significant threat to the marine environment and local communities. The results described here provide useful information that can inform China’s “Action Plan for Prevention and Control of Water Pollution”. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Recommanded Product: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Recommanded Product: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Watanabe, Masaaki et al. published their research in Internal Medicine (Tokyo, Japan) in 2021 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Product Details of 53902-12-8

The diagnosis of drug-induced liver injury: current diagnostic ability and future challenges of the digestive disease week-Japan 2004 scale 15 years after its proposal was written by Watanabe, Masaaki;Shibuya, Akitaka;Yokomori, Hiroaki;Koizumi, Wasaburo. And the article was included in Internal Medicine (Tokyo, Japan) in 2021.Product Details of 53902-12-8 This article mentions the following:

This study examined whether or not the Digestive Disease Week-Japan (DDW-J) 2004 scale proposed over 15 years ago can be applied to current cases of drug-induced liver injury (DILI). The new patients group included 125 patients from 2012 to 2019 and was divided into 2 subgroups: 96 patients in the new DILI group and 29 patients in the new non-DILI group. Similarly, the old patients group included 105 patients from 1997 to 2002 and was divided into 2 subgroups: 59 patients in the old DILI group and 46 patients in the old non-DILI group. Patients were assessed by the DDW-J 2004 scale; those with a score ≥3 were defined as having DILI. The total score of the new DILI group was significantly lower than that of the old DILI group [6 (1-11) vs. 6 (3-9), p = 0.004]. The sensitivity, specificity, pos. predictive value, and neg. predictive value (NPV) were 94.8%, 65.6%, 90.1%, and 79.2%, resp., in the new patients group and 100%, 91.4%, 93.7%, and 100%, resp., in the old patients group. The specificity and NPV of the new patients group were significantly lower than those of the old patients group. The DDW-J 2004 scale maintains a stable diagnostic ability for DILI, regardless of differences in eras and verification methods. However, differential diagnoses can affect the scoring, and new types of DILI, such as immune-related adverse events, must be addressed. Therefore, upgrading the scale should be considered. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Product Details of 53902-12-8).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Product Details of 53902-12-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Chen, Youquan et al. published their research in Bioengineered in 2021 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Product Details of 53902-12-8

Tranilast inhibits angiotensin II-induced myocardial fibrosis through S100A11/ transforming growth factor-β (TGF-β1)/Smad axis was written by Chen, Youquan;Huang, Ming;Yan, Yi;He, Dequan. And the article was included in Bioengineered in 2021.Product Details of 53902-12-8 This article mentions the following:

Tranilast has an ameliorative effect on myocardial fibrosis (MF), but the specific mechanism has not been studied. S100A11 is a key regulator of collagen expression in MF. In this paper, we will study the regulatory roles of Tranilast and S100A11 in MF. After the introduction of angiotensin II (AngII) to Human cardiac fibroblasts (HCF), Tranilast was administered. CCK-8 kit was used to detect cell viability. Wound Healing assay detected cell migration, and Western blot was used to detect the expression of migration-related proteins and proteins related to extracellular matrix synthesis. The expression of α-SMA was detected by immunofluorescence (IF). The expression of S100A11 was detected by qPCR and Western blot, and then S100A11 was overexpressed by cell transfection technol., so as to explore the mechanism by which Tranilast regulated MF. In addition, the expression of TGF-β1/Smad pathway related proteins was detected by Western blot. Tranilast inhibited Ang II-induced over-proliferation, migration and fibrosis of human cardiac fibroblasts (HCF), and simultaneously significantly decreased S100A11 expression was observed Overexpression of S100A11 reversed the inhibition of Tranilast on AngII-induced over-proliferation, migration, and fibrosis in HCF, accompanied by activation of the TGF-β1/Smad pathway. Overall, Tranilast inhibits angiotensin II-induced myocardial fibrosis through S100A11/TGF-β1/Smad axis. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Product Details of 53902-12-8).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Product Details of 53902-12-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Koch, Sheryl E. et al. published their research in Journal of Cardiovascular Pharmacology in 2018 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.COA of Formula: C18H17NO5

Tranilast Blunts the Hypertrophic and Fibrotic Response to Increased Afterload Independent of Cardiomyocyte Transient Receptor Potential Vanilloid 2 Channels was written by Koch, Sheryl E.;Nieman, Michelle L.;Robbins, Nathan;Slone, Samuel;Worley, Mariah;Green, Lisa C.;Chen, Yamei;Barlow, Alexandria;Tranter, Michael;Wang, HongSheng;Lorenz, John N.;Rubinstein, Jack. And the article was included in Journal of Cardiovascular Pharmacology in 2018.COA of Formula: C18H17NO5 This article mentions the following:

Tranilast is clin. indicated for the treatment of allergic disorders and is also a nonselective blocker of the transient receptor potential vanilloid 2 (TRPV2) channel. Previous studies have found that it has protective effects in various animal models of cardiac disease. The laboratory has found that genetic deletion of TRPV2 results in a blunted hypertrophic response to increased afterload; thus, this study tested the hypothesis that tranilast through cardiomyocyte TRPV2 blockade can inhibit the hypertrophic response to pressure overload in vivo through transverse aortic constriction and ex vivo through isolated myocyte studies. The in vivo studies demonstrated that tranilast blunted the fibrotic response to increased afterload and, to a lesser extent, the hypertrophic response. After 4 wk, this blunting was associated with improved cardiac function, although at 8 wk, the cardiac function deteriorated similarly to the control group. Finally, the in vitro studies demonstrated that tranilast was not inhibiting these responses at the cardiomyocyte level. In conclusion, it demonstrated that tranilast blunting of the fibrotic and hypertrophic response occurs independently of cardiac TRPV2 channels and may be cardioprotective in the short term but not after prolonged administration. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8COA of Formula: C18H17NO5).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.COA of Formula: C18H17NO5

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Kim, Ha Yeong et al. published their research in Stem Cell Research in 2021 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Recommanded Product: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Transient receptor potential vanilloid 2 mediates the inhibitory effect of far-infrared irradiation on adipogenic differentiation of tonsil-derived mesenchymal stem cells was written by Kim, Ha Yeong;Oh, Se-Young;Choi, Young Min;Park, Jung-Hyun;Kim, Han Su;Jo, Inho. And the article was included in Stem Cell Research in 2021.Recommanded Product: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid This article mentions the following:

Far-IR (FIR) irradiation inhibits adipogenic differentiation of tonsil-derived mesenchymal stem cells (TMSCs) by activating Ca2+-dependent protein phosphatase 2B (PP2B), but it stimulates osteogenic differentiation in a PP2B-independent pathway. We investigated the potential involvement of transient receptor potential vanilloid (TRPV) channels, a well-known Ca2+-permeable channel, in the effects of FIR irradiation on adipogenic or osteogenic differentiation of TMSCs. TMSCs, in the absence or presence of activators or inhibitors, were exposed to FIR irradiation followed by adipogenic or osteogenic differentiation, which was assessed using Oil red O or Alizarin red S staining, resp. RT-PCR, qRT-PCR, and Western blotting were used to determine gene and protein expression of calcium channels and adipocyte-specific markers. Treatment with the calcium ionophore ionomycin simulated the inhibitory effect of FIR irradiation on adipogenic differentiation but had no effect on osteogenic differentiation, indicating the involvement of intracellular Ca2+ in adipogenic differentiation. Inhibition of pan-TRP channels using ruthenium red reversed the FIR irradiation-induced inhibition of adipogenic differentiation. Among the TRP channels tested, inhibition of the TRPV2 channel by tranilast or siRNA against TRPV2 attenuated the inhibitory effect of FIR irradiation on adipogenic differentiation, accompanied by a decrease in intracellular Ca2+ levels. By contrast, activation of the TRPV2 channel by probenecid simulated FIR irradiation-induced inhibition of adipogenic differentiation. Expectedly, the stimulatory effect of FIR irradiation on osteogenic differentiation was independent of the TRPV2 channel. Our data demonstrate that the TRPV2 channel is a sensor/receptor for the inhibited adipogenic differentiation of TMSCs associated with FIR irradiation In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Recommanded Product: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Recommanded Product: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Shiozaki, Atsushi et al. published their research in Journal of Gastroenterology in 2018 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Synthetic Route of C18H17NO5

Esophageal cancer stem cells are suppressed by tranilast, a TRPV2 channel inhibitor was written by Shiozaki, Atsushi;Kudou, Michihiro;Ichikawa, Daisuke;Fujiwara, Hitoshi;Shimizu, Hiroki;Ishimoto, Takeshi;Arita, Tomohiro;Kosuga, Toshiyuki;Konishi, Hirotaka;Komatsu, Shuhei;Okamoto, Kazuma;Marunaka, Yoshinori;Otsuji, Eigo. And the article was included in Journal of Gastroenterology in 2018.Synthetic Route of C18H17NO5 This article mentions the following:

Background: Recent evidence suggests that the targeting of membrane proteins specifically activated in cancer stem cells (CSCs) is an important strategy for cancer therapy. The objectives of the present study were to investigate the expression and activity of ion-transport-related mols. in the CSCs of esophageal squamous cell carcinoma. Methods: Cells exhibiting strong aldehyde dehydrogenase 1 family member A1 (ALDH1A1) activity were isolated from TE8 cells by fluorescence-activated cell sorting, and CSCs were then generated with the sphere formation assay. The gene expression profiles of CSCs were examined by microarray anal. Results: Among TE8 cells, ALDH1A1 mRNA and protein levels were higher in CSCs than in non-CSCs. The CSCs obtained were resistant to cisplatin and had the ability to redifferentiate. The results of the microarray anal. revealed that the expression of 50 genes encoding plasma membrane proteins was altered in CSCs, whereas that of several genes related to ion channels, including transient receptor potential vanilloid 2 (TRPV2), was upregulated. The TRPV2 inhibitor tranilast was more cytotoxic at a lower concentration in CSCs than in non-CSCs, and effectively decreased the number of tumorspheres. Furthermore, tranilast significantly decreased the cell population that strongly expressed ALDH1A1 among TE8 cells. Conclusions: The results of the present study suggest that TRPV2 is involved in the maintenance of CSCs, and that its specific inhibitor, tranilast, has potential as a targeted therapeutic agent against esophageal squamous cell carcinoma. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Synthetic Route of C18H17NO5).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Synthetic Route of C18H17NO5

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Bosman, Matthias et al. published their research in International Journal of Molecular Sciences in 2021 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Related Products of 53902-12-8

Doxorubicin Impairs Smooth Muscle Cell Contraction: Novel Insights in Vascular Toxicity was written by Bosman, Matthias;Kruger, Dustin N.;Favere, Kasper;Wesley, Callan D.;Neutel, Cedric H. G.;Van Asbroeck, Birgit;Diebels, Owen R.;Faes, Bart;Schenk, Timen J.;Martinet, Wim;De Meyer, Guido R. Y.;Van Craenenbroeck, Emeline M.;Guns, Pieter-Jan D. F.. And the article was included in International Journal of Molecular Sciences in 2021.Related Products of 53902-12-8 This article mentions the following:

Clin. and animal studies have demonstrated that chemotherapeutic doxorubicin (DOX) increases arterial stiffness, a predictor of cardiovascular risk. Despite consensus about DOX-impaired endothelium-dependent vasodilation as a contributing mechanism, some studies have reported conflicting results on vascular smooth muscle cell (VSMC) function after DOX treatment. The present study aimed to investigate the effects of DOX on VSMC function. To this end, mice received a single injection of 4 mg DOX/kg, or mouse aortic segments were treated ex vivo with 1 μM DOX, followed by vascular reactivity evaluation 16 h later. Phenylephrine (PE)-induced VSMC contraction was decreased after DOX treatment. DOX did not affect the transient PE contraction dependent on Ca2+ release from the sarcoplasmic reticulum (0 mM Ca2+), but it reduced the subsequent tonic phase characterised by Ca2+ influx. These findings were supported by similar angiotensin II and attenuated endothelin-1 contractions. The involvement of voltage-gated Ca2+ channels in DOX-decreased contraction was excluded by using levcromakalim and diltiazem in PE-induced contraction and corroborated by similar K+ and serotonin contractions. Despite the evaluation of multiple blockers of transient receptor potential channels, the exact mechanism for DOX-decreased VSMC contraction remains elusive. Surprisingly, DOX reduced ex vivo but not in vivo arterial stiffness, highlighting the importance of appropriate timing for evaluating arterial stiffness in DOX-treated patients. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Related Products of 53902-12-8).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Related Products of 53902-12-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Choi, Joonhyeok et al. published their research in International Journal of Molecular Sciences in 2018 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Category: amides-buliding-blocks

Thiopurine drugs repositioned as tyrosinase inhibitors was written by Choi, Joonhyeok;Lee, You-Mie;Jee, Jun-Goo. And the article was included in International Journal of Molecular Sciences in 2018.Category: amides-buliding-blocks This article mentions the following:

Drug repositioning is the application of the existing drugs to new uses and has the potential to reduce the time and cost required for the typical drug discovery process. In this study, we repositioned thiopurine drugs used for the treatment of acute leukemia as new tyrosinase inhibitors. Tyrosinase catalyzes two successive oxidations in melanin biosynthesis: the conversions of tyrosine to dihydroxyphenylalanine (DOPA) and DOPA to dopaquinone. Continuous efforts are underway to discover small mol. inhibitors of tyrosinase for therapeutic and cosmetic purposes. Structure-based virtual screening predicted inhibitor candidates from the US Food and Drug Administration (FDA)-approved drugs. Enzyme assays confirmed the thiopurine leukemia drug, thioguanine, as a tyrosinase inhibitor with the inhibitory constant of 52μM. Two other thiopurine drugs, mercaptopurine and azathioprine, were also evaluated for their tyrosinase inhibition; mercaptopurine caused stronger inhibition than thioguanine did, whereas azathioprine was a poor inhibitor. The inhibitory constant of mercaptopurine (16μM) was comparable to that of the well-known inhibitor kojic acid (13μM). The cell-based assay using B16F10 melanoma cells confirmed that the compounds inhibit mammalian tyrosinase. Particularly, 50μM thioguanine reduced the melanin content by 57%, without apparent cytotoxicity. Cheminformatics showed that the thiopurine drugs shared little chem. similarity with the known tyrosinase inhibitors. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Category: amides-buliding-blocks).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Category: amides-buliding-blocks

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics