Teng, Christina T. et al. published their research in SLAS Discovery in 2017 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Safety of 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Development of Novel Cell Lines for High-Throughput Screening to Detect Estrogen-Related Receptor Alpha Modulators was written by Teng, Christina T.;Hsieh, Jui-Hua;Zhao, Jinghua;Huang, Ruili;Xia, Menghang;Martin, Negin;Gao, Xiaohua;Dixon, Darlene;Auerbach, Scott S.;Witt, Kristine L.;Merrick, B. Alex. And the article was included in SLAS Discovery in 2017.Safety of 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid This article mentions the following:

Estrogen-related receptor alpha (ERRα), the first orphan nuclear receptor discovered, is crucial for the control of cellular energy metabolism ERRα and its coactivator, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), are required for rapid energy production in response to environmental challenges. They have been implicated in the etiol. of metabolic disorders such as type 2 diabetes and metabolic syndrome. ERRα also plays a role in the pathogenesis of breast cancer. Identification of compounds that modulate ERRα signaling may elucidate environmental factors associated with these diseases. Therefore, we developed stable cell lines containing an intact ERRα signaling pathway, with and without the coactivator PGC-1α, to use as high-throughput screening tools to detect ERRα modulators. The lentiviral PGC-1α expression constructs and ERRα multiple hormone response element (MHRE) reporters were introduced into HEK293T cells that express endogenous ERRα. A cell line expressing the reporter alone was designated “ERR.” A second cell line expressing both reporter and PGC-1α was named “PGC/ERR.” Initial screenings of the Library of Pharmacol. Active Compounds (LOPAC) identified 33 ERR and 22 PGC/ERR agonists, and 54 ERR and 15 PGC/ERR antagonists. Several potent ERRα agonists were dietary plant compounds (e.g., genistein). In conclusion, these cell lines are suitable for high-throughput screens to identify environmental chems. affecting metabolic pathways and breast cancer progression. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Safety of 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Safety of 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Nakamura, Yusuke et al. published their research in Gastric Cancer in 2022 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.HPLC of Formula: 53902-12-8

Crosstalk between cancer-associated fibroblasts and immune cells in peritoneal metastasis: inhibition in the migration of M2 macrophages and mast cells by Tranilast was written by Nakamura, Yusuke;Kinoshita, Jun;Yamaguchi, Takahisa;Aoki, Tatsuya;Saito, Hiroto;Hamabe-Horiike, Toshihide;Harada, Shinichi;Nomura, Sachiyo;Inaki, Noriyuki;Fushida, Sachio. And the article was included in Gastric Cancer in 2022.HPLC of Formula: 53902-12-8 This article mentions the following:

The role of tumor-stroma interactions in tumor immune microenvironment (TME) is attracting attention. We have previously reported that cancer-associated fibroblasts (CAFs) contribute to the progression of peritoneal metastasis (PM) in gastric cancer (GC), and M2 macrophages and mast cells also contribute to TME of PM. To elucidate the role of CAFs in TME, we established an immunocompetent mouse PM model with fibrosis, which reflects clin. features of TME. However, the involvement of CAFs in the immunosuppressive microenvironment remains unclear. In this study, we investigated the efficacy of Tranilast at modifying this immune tolerance by suppressing CAFs. The interaction between mouse myofibroblast cell line LmcMF and mouse GC cell line YTN16 on M2 macrophage migration was investigated, and the inhibitory effect of Tranilast was examined in vitro. Using C57BL/6J mouse PM model established using YTN16 with co-inoculation of LmcMF, TME of resected PM treated with or without Tranilast was analyzed by immunohistochem. The addition of YTN16 cell-conditioned medium to LmcMF cells enhanced CXCL12 expression and stimulated M2 macrophage migration, whereas Tranilast inhibited the migration ability of M2 macrophages by suppressing CXCL12 secretion from LmcMF. In PM model, Tranilast inhibited tumor growth and fibrosis, M2 macrophage, and mast cell infiltration and significantly promoted CD8 + lymphocyte infiltration into the tumor, leading to apoptosis of cancer cells by an immune response. Tranilast improved the immunosuppressive microenvironment by inhibiting CAF function in a mouse PM model. Tranilast is thus a promising candidate for the treatment of PM. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8HPLC of Formula: 53902-12-8).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.HPLC of Formula: 53902-12-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Pascart, Tristan et al. published their research in Expert Opinion on Investigational Drugs in 2018 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.HPLC of Formula: 53902-12-8

Investigational drugs for hyperuricemia, an update on recent developments was written by Pascart, Tristan;Richette, Pascal. And the article was included in Expert Opinion on Investigational Drugs in 2018.HPLC of Formula: 53902-12-8 This article mentions the following:

The significant proportion of gout patients not reaching serum urate levels below 6.0 mg/dL and the debated pathogenicity of hyperuricemia (HU) itself motivate investigators to develop new drugs to decrease uricemia. This review discusses the drugs considered to be in active development from pre-clin. to phase III studies. This review covers 11 drugs in development, including a xanthine oxidase inhibitor (topiroxostat), uricosurics (verinurad, arhalofenate, UR-1102, tranilast), dual inhibitors (RLBN1001, KUX-1151), a uricase (pergsiticase), an inhibitor of hypoxanthine production (ulodesine), and drugs with yet-to-explain mechanisms of action (levotofisopam, tuna extracts). Drugs well advanced in their development – particularly arhalofenate, verinurad and topiroxostat – open the prospect of patient-comorbidity-tailored HU management. Development of novel therapies provides new insight into our understanding of gout and HU, particularly potential pathogenicity. Apart from potency to decrease serum urate levels and good tolerance profiles, novel therapies will need to focus on administration modalities facilitating treatment adherence. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8HPLC of Formula: 53902-12-8).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.HPLC of Formula: 53902-12-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Harigai, Ritsuko et al. published their research in Scientific Reports in 2018 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Formula: C18H17NO5

Tranilast inhibits the expression of genes related to epithelial-mesenchymal transition and angiogenesis in neurofibromin-deficient cells was written by Harigai, Ritsuko;Sakai, Shigeki;Nobusue, Hiroyuki;Hirose, Chikako;Sampetrean, Oltea;Minami, Noriaki;Hata, Yukie;Kasama, Takashi;Hirose, Takanori;Takenouchi, Toshiki;Kosaki, Kenjiro;Kishi, Kazuo;Saya, Hideyuki;Arima, Yoshimi. And the article was included in Scientific Reports in 2018.Formula: C18H17NO5 This article mentions the following:

Neurofibromatosis type 1 (NF1) is caused by germline mutations in the NF1 gene and is characterized by cafe au lait spots and benign tumors known as neurofibromas. NF1 encodes the tumor suppressor protein neurofibromin, which neg. regulates the small GTPase Ras, with the constitutive activation of Ras signalling resulting from NF1 mutations being thought to underlie neurofibroma development. We previously showed that knockdown of neurofibromin triggers epithelial-mesenchymal transition (EMT) signalling and that such signalling is activated in NF1-associated neurofibromas. With the use of a cell-based drug screening assay, we have now identified the antiallergy drug tranilast (N-(3,4-dimethoxycinnamoyl) anthranilic acid) as an inhibitor of EMT and found that it attenuated the expression of mesenchymal markers and angiogenesis-related genes in NF1-mutated sNF96.2 cells and in neurofibroma cells from NF1 patients. Tranilast also suppressed the proliferation of neurofibromin-deficient cells in vitro more effectively than it did that of intact cells. In addition, tranilast inhibited sNF96.2 cell migration and proliferation in vivo. Knockdown of type III collagen (COL3A1) also suppressed the proliferation of neurofibroma cells, whereas expression of COL3A1 and SOX2 was increased in tranilast-resistant cells, suggesting that COL3A1 and the transcription factor SOX2 might contribute to the development of tranilast resistance. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Formula: C18H17NO5).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Formula: C18H17NO5

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Luo, Huilong et al. published their research in Molecular Pharmaceutics in 2019 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Name: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Cannabidiol Increases Proliferation, Migration, Tubulogenesis, and Integrity of Human Brain Endothelial Cells through TRPV2 Activation was written by Luo, Huilong;Rossi, Elisa;Saubamea, Bruno;Chasseigneaux, Stephanie;Cochois, Veronique;Choublier, Nina;Smirnova, Maria;Glacial, Fabienne;Perriere, Nicolas;Bourdoulous, Sandrine;Smadja, David M.;Menet, Marie-Claude;Couraud, Pierre-Olivier;Cisternino, Salvatore;Decleves, Xavier. And the article was included in Molecular Pharmaceutics in 2019.Name: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid This article mentions the following:

The effect of cannabidiol (CBD), a high-affinity agonist of the transient receptor potential vanilloid-2 (TRPV2) channel, has been poorly investigated in human brain microvessel endothelial cells (BMEC) forming the blood-brain barrier (BBB). TRPV2 expression and its role on Ca2+ cellular dynamics, trans-endothelial elec. resistance (TEER), cell viability and growth, migration, and tubulogenesis were evaluated in human primary cultures of BMEC (hPBMEC) or in the human cerebral microvessel endothelial hCMEC/D3 cell line. Abundant TRPV2 expression was measured in hCMEC/D3 and hPBMEC by qRT-PCR, Western blotting, nontargeted proteomics, and cellular immunofluorescence studies. Intracellular Ca2+ levels were increased by heat and CBD and blocked by the nonspecific TRP antagonist ruthenium red (RR) and the selective TRPV2 inhibitor tranilast (TNL) or by silencing cells with TRPV2 siRNA. CBD dose-dependently induced the hCMEC/D3 cell number (EC50 0.3 ± 0.1 μM), and this effect was fully abolished by TNL or TRPV2 siRNA. A wound healing assay showed that CBD induced cell migration, which was also inhibited by TNL or TRPV2 siRNA. Tubulogenesis of hCMEC/D3 cells in 3D matrigel cultures was significantly increased by 41 and 73% after a 7 or 24 h CBD treatment, resp., and abolished by TNL. CBD also increased the TEER of hPBMEC monolayers cultured in transwell, and this was blocked by TNL. Our results show that CBD, at extracellular concentrations close to those observed in plasma of patients treated by CBD, induces proliferation, migration, tubulogenesis, and TEER increase in human brain endothelial cells, suggesting CBD might be a potent target for modulating the human BBB. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Name: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Name: 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Mukai, Shin et al. published their research in PLoS One in 2018 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Related Products of 53902-12-8

Therapeutic potential of tranilast for the treatment of chronic graft-versus-host disease in mice was written by Mukai, Shin;Ogawa, Yoko;Saya, Hideyuki;Kawakami, Yutaka;Tsubota, Kazuo. And the article was included in PLoS One in 2018.Related Products of 53902-12-8 This article mentions the following:

Chronic graft-vs.-host disease (cGVHD) is a marked complication of hematopoietic stem cell transplantation, and multiple organs can be affected by cGVHD-induced inflammation and fibrosis. In clin. settings, immunosuppressive agents have been the last resort to treat cGVHD. However, it has been only partially effective for cGVHD. Hence, efficacious treatment of cGVHD is eagerly awaited. Our previous work suggested that oxidative stress was elevated in cGVHD-disordered lacrimal glands and that epithelial-to-mesenchymal transition (EMT) was implicated in fibrosis caused by ocular cGVHD. In addition, our recent article demonstrated that thioredoxin interaction protein (TXNIP) and transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were associated with the development of cGVHD. After our search for effective drugs, we chose tranilast to combat systemic cGVHD. Tranilast is known to (1) act as an inhibitor of the inflammatory mols. TXNIP and NF-κB and (2) exert anti-fibrotic, anti-EMT and anti-oxidative effects. To investigate the effectiveness of tranilast for cGVHD, we used an MHC-compatible, multiple minor histocompatibility antigen-mismatched murine model of cGVHD. Tranilast or a solvent-vehicle were orally given to the allogeneic bone marrow transplantation (allo-BMT) recipients from the day before allo-BMT (Day-1) to Day 27 after allo-BMT. Their cGVHD-vulnerable organs were collected Day 28 after allo-BMT and analyzed by using various methods such as histol., immunohistochem. and immunoblotting. As indicated by our results, tranilast alleviated cGVHD-elicited inflammation and fibrosis by suppressing the expression and/or activation of TXNIP and NF-κB and preventing EMT. Taken together, although this strategy may not be a complete cure for cGVHD, tranilast could be a promising medication to ameliorate cGVHD-triggered disabling symptoms. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Related Products of 53902-12-8).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Related Products of 53902-12-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Tsuchie, Hiroyuki et al. published their research in Acta medica Okayama in 2021 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Recommanded Product: 53902-12-8

Deep Angiomyxoma of the Thigh That Is Difficult to Diagnose: A Case Report and Literature Review. was written by Tsuchie, Hiroyuki;Miyakoshi, Naohisa;Nagasawa, Hiroyuki;Nanjo, Hiroshi;Shimada, Yoichi. And the article was included in Acta medica Okayama in 2021.Recommanded Product: 53902-12-8 This article mentions the following:

We present an extremely rare case of deep angiomyxoma (DAM) in the thigh that was misdiagnosed as desmoid-type fibromatosis. A 40-year-old Japanese woman presented with a mass on the left thigh. The histological diagnosis by needle biopsy was desmoid-type fibromatosis; the tumor grew slowly and was resected 4 years later. The histological diagnosis from the resected tumor was DAM. As of 16 months post-surgery, the patient has not noticed any local recurrence. Although DAM in a lower extremity is extremely rare, clinicians must be aware of its possible occurrence in areas relatively close to the pelvis. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Recommanded Product: 53902-12-8).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Recommanded Product: 53902-12-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Aviolat, Hubert et al. published their research in Journal of Molecular Biology in 2018 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.HPLC of Formula: 53902-12-8

SynAggreg: A Multifunctional High-Throughput Technology for Precision Study of Amyloid Aggregation and Systematic Discovery of Synergistic Inhibitor Compounds was written by Aviolat, Hubert;Nomine, Yves;Gioria, Sophie;Bonhoure, Anna;Hoffmann, David;Ruhlmann, Christine;Nierengarten, Helene;Ruffenach, Frank;Villa, Pascal;Trottier, Yvon;Klein, Fabrice A. C.. And the article was included in Journal of Molecular Biology in 2018.HPLC of Formula: 53902-12-8 This article mentions the following:

Numerous proteins can coalesce into amyloid self-assemblies, which are responsible for a class of diseases called amyloidoses, but which can also fulfill important biol. functions and are of great interest for biotechnol. Amyloid aggregation is a complex multi-step process, poorly prone to detailed structural studies. Therefore, small mols. interacting with amyloids are often used as tools to probe the amyloid aggregation pathway and in some cases to treat amyloidoses as they prevent pathogenic protein aggregation. Here, we report on SynAggreg, an in vitro high-throughput (HT) platform dedicated to the precision study of amyloid aggregation and the effect of modulator compounds SynAggreg relies on an accurate bi-fluorescent amyloid-tracer readout that overcomes some limitations of existing HT methods. It allows addressing diverse aspects of aggregation modulation that are critical for pathomechanistic studies, such as the specificity of compounds toward various amyloids and their effects on aggregation kinetics, as well as the co-assembly propensity of distinct amyloids and the influence of prion-like seeding on self-assembly. Furthermore, SynAggreg is the first HT technol. that integrates tailored methodol. to systematically identify synergistic compound combinations-an emerging strategy to improve fatal amyloidoses by targeting multiple steps of the aggregation pathway. To this end, we apply anal. combinatorial scores to rank the inhibition efficiency of couples of compounds and to readily detect synergism. Finally, the SynAggreg platform should be suited for the characterization of a broad class of amyloids, whether of interest for drug development purposes, for fundamental research on amyloid functions, or for biotechnol. applications. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8HPLC of Formula: 53902-12-8).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.HPLC of Formula: 53902-12-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Lv, Xiaodan et al. published their research in Cytokine+ in 2022 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Safety of 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Flagellin maintains eosinophils in intestine was written by Lv, Xiaodan;Chang, Qing;Wang, Qin;Jin, Qiao-Ruo;Liu, Hua-Zhen;Yang, Shao-Bo;Yang, Ping-Chang;Yang, Gui. And the article was included in Cytokine+ in 2022.Safety of 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid This article mentions the following:

Eosinophils (Eos) are the major effector cells in allergic response. The regulation of Eo is not fully understood yet. Flagellin (FGN) has immune regulatory functions. This study aims to elucidate the role of FGN in maintaining Eo at the static status in the intestinal tissues. A mouse food allergy (FA) model was developed. Eo mediator levels in the serum or culture supernatant or intestinal lavage fluids were assessed and used as an indicator of Eo activation. The results showed that less FGN amounts were detected in the FA mouse intestinal tissues, that were neg. correlated with the Eo activation. Mast cell-derived chymase bound FGN to induce FGN degradation FGN formed complexes with FcγRI on Eos to prevent specific antigens from binding FcγRI, and thus, to prevent Eo activation. Administration of FGN efficiently alleviated exptl. FA. In conclusion, FGN plays a critical role in maintaining Eos at static status in the intestine. Administration of FGN can alleviate exptl. FA. FGN may be a novel drug candidate to be used in the treatment of Eo-related diseases. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Safety of 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Safety of 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Chien, Pham Ngoc et al. published their research in In Vivo in 2022 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Category: amides-buliding-blocks

Nanomicelle-generating microneedles loaded with tranilast for treatment of hypertrophic scars in a rabbit model was written by Chien, Pham Ngoc;Jeong, Jae Heon;Nam, Sun Young;Lim, Su Yeon;Van Long, Nguyen;Zhang, Xin Rui;Jeong, Ji Hoon;Heo, Chan Yeong. And the article was included in In Vivo in 2022.Category: amides-buliding-blocks This article mentions the following:

Background/Aim: Hypertrophic scars (HS) are the result of pathol. wound healing characterized by a red, raised scar formation. The goal of this research was development of a new method for treatment of HS formation. Materials and Methods: A tranilast-loaded microneedle (TMN) was developed and applied in a rabbit ear model to treat an induced HS. Scar elevation index, the thickness of dorsal skin by hematoxylin and eosin staining, collagen deposition by Masson trichrome staining and expression of myofibroblast biomarker proteins were evaluated. Results: The 12×12 array of the TMN containing 2.9 μg tranilast per needle released more than 80% of the drug within 30 min. During the procedure, control, non-loaded MN and TMN loaded with three different doses of tranilast (low: 2.5-3, medium: 25-30, and high: 100-150 μg) were applied to the HS in rabbit ears. High-level TMN led to a clear and natural appearance of skin, a decrease in scar elevation index by 47% and decline in the thickness of the epidermis from 69.27 to 15.92 μm when compared to the control group. Moreover, the collagen d. also decreased in groups treated with medium- or high-level TMNs, by 10.2% and 9.06%, resp. Furthermore, the expression of transforming growth factor-β, collagen-1, and α-smooth muscle actin proteins was reduced in TMN-treated HSs compared to the control. Conclusion: The findings show the overall efficacy of TMNs in inhibiting HS. Thus, use of TMN is a simple and cosmetic remedy for HS, with good protection and reliability. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Category: amides-buliding-blocks).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Category: amides-buliding-blocks

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics