Functional Amphiphilic Poly(2-oxazoline) Block Copolymers as Drug Carriers: the Relationship between Structure and Drug Loading Capacity was written by Dong, Si;Ma, Sheng;Liu, Zhi-Lin;Ma, Li-Li;Zhang, Yu;Tang, Zhao-Hui;Deng, Ming-Xiao;Song, Wan-Tong. And the article was included in Chinese Journal of Polymer Science in 2021.COA of Formula: C18H17NO5 This article mentions the following:
Poly(2-oxazoline) (POx) is a kind of polymeric amides that can be viewed as conformational isomers of polypeptides with excellent cyto- and hemo-compatibility, and is promising to be used as drug carriers. However, the drug loading capacity (DLC) of POx for many drugs is still low except several hydrophobic ones including paclitaxel (PTX). Herein, we prepared a series of amphiphilic POx block copolymers with various functional groups, and investigated the relationship between functional structures and the DLC. Functional POxs with benzyl, carboxyl, and amino groups in the side-chain were synthesized based on a poly(2-methyl-2-oxazoline)-block-poly(2-butyl-2-oxazoline-co-2-butenyl-2-oxazoline) (PMeOx-P(nBuOx-co-ButenOx), PMBEOx) precursor, followed by click reaction between vinyl and the 2-phenylethanethiol, thioglycolic acid and cysteamine. Using thin-film hydration method, eight commonly used drugs with various characteristics were encapsulated within these functional POx polymers. We found that amine-containing drugs were more easily encapsulated by POx with carboxyl groups, while amine functionalities in POx enhanced the loading capacity of drugs with carboxyl groups. In addition, ;π;π interactions resulted in enhanced DLC of most drugs, except several hydrophobic drugs with aromatic to total carbon ratios less than 0.5. In general, we could successfully encapsulate all the selected drugs with a DLC% over 10% using properly selected functional POxs. The above results confirm that the DLC of polymeric carriers can be adjusted by modifying the functional groups, and the prepared series of functional POxs provide an option for various drug loadings. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8COA of Formula: C18H17NO5).
2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.COA of Formula: C18H17NO5
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics